题目传送门


题目描述

小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N),第i中操作为将序列从左到右划分为${2}^{N-i+1}$段,每段恰好包括${2}^{i-1}$个数,然后整体交换其中两段.小A想知道可以将数组A从小到大排序的不同的操作序列有多少个,小A认为两个操作序列不同,当且仅当操作个数不同,或者至少一个操作不同(种类不同或者操作位置不同).
  下面是一个操作事例:
  N=3,A[1..8]=[3,6,1,2,7,8,5,4].
  第一次操作,执行第3种操作,交换A[1..4]和A[5..8],交换后的A[1..8]为[7,8,5,4,3,6,1,2].
  第二次操作,执行第1种操作,交换A[3]和A[5],交换后的A[1..8]为[7,8,3,4,5,6,1,2].
  第三次操作,执行第2中操作,交换A[1..2]和A[7..8],交换后的A[1..8]为[1,2,3,4,5,6,7,8].


有关题目描述的说明

说实话,一开始真没看懂题。

其实,大致意思就是说,每次把序列分成${2}^{N-i+1}$个长度为${2}^{i-1}$的块,每次可以选择其中两块交换。

需要注意的两点就是:

  1.每种操作只能使用一次。

  2.不是说所有长度为2(i-1)的都行,举个例子:假设长度为2,那么每一块就是{1,2},{3,4},{5,6},……,而{2,3},{4,5}则不是。


输入格式

第一行,一个整数N

第二行,${2}^{N}$个整数,A[1..${2}^{N}$]

输出格式

一个整数表示答案


样例

样例输入:

3

7 8 5 6 1 2 4 3

样例输出:

6


数据范围与提示

对于30%的数据,1≤N≤4; 对于全部的数据,1≤N≤12。


题解

这道题居然是搜索,简直难以置信,没办法,那就搜吧。

数据范围1≤N≤12,算一算发现是4096->5000,下意识${N}^{2}$。

首先,我们来考虑这样一个问题,如果我们执行的操作是3,1,2能完成排序,那么1,2,3也一定能,那么就是说,如果我们找到了一种操作数为x的方案,那么它对答案的贡献就是x!。

然后,再来考虑,因为每一种操作只能执行一次,所以这时候分以下四种情况:

  1.没有长度为2(i-1)的不符合顺序的序列对,那么直接尝试下一种操作。例:每一块的长度为4,序列为{1,3,2,4,5,6,7,8},{3,2}虽然不符合顺序,当前操作不能对它进行操作,那么我们执行下一个操作。

  2.存在一个这样的序列对,那么我们尝试进行内部交换。

  3.存在两个这样的序列对,例如:每一块的长度为2,序列为{1,2,7,8,5,6,3,4},那么我们需要枚举四种情况,分别是{1,2}与{5,6}换,{1,2}与{3,4}换,{7,8}与{5,6}换,{7,8}与{3,4}换。

  4.如果存在多于两个这样的序列对,那么这种方案一定行不通,赶快return就好了。

交换的时候暴力swap即可。

最后,大家可能还是毫无头绪,那么我再来解释一个问题。

我们在进行搜索的时候要从小往大搜索,因为这样,我们在交换两个长度更长的序列的时候已经保证了它里面是有序的,然后如果往后的操作可以将当前可以完成当前操作也可以完成的排序,那么就交给以后处理,例:当前每一块的为1,序列为{7,8,5,6,1,2,4,3},我们发现{7,8}和{5,6}在以后的操作中可以完成交换,那么我们现在就只尝试交换{4,3}。

统计答案时,将每一种方案的答案累加即可。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int n,sum,miao;
int jc[13];
int ans;
int a[4097];
void change(int x,int y,int w){do swap(a[x+w],a[y+w]);while(w--);}//暴力swap
void dfs(int x,int w)
{
if(x==miao)//所有操作都已经尝试过了
{
ans+=jc[w];//记着加的是阶乘
return;
}
int cnt=0;
int flag[2]={0,0};//一定要是局部变量,100->25
int wzc=1<<x;//记算长度
for(int i=1;i<=n;i+=(wzc<<1))//统计位置,(wzc<<1)即为自动越过下一种操作可以处理掉的情况
{
if(a[i+wzc-1]+1!=a[i+wzc])
{
if(cnt==2)return;//如果两个以上就return
flag[cnt++]=i;
}
}
switch(cnt)
{
case 0://不存在
{
dfs(x+1,w);
return;
}
case 1://存在一对
{
change(flag[0],flag[0]+wzc,wzc-1);
dfs(x+1,w+1);
change(flag[0],flag[0]+wzc,wzc-1);
return;
}
case 2://存在两对,再分四种情况
{
if(a[flag[0]+wzc-1]+1==a[flag[1]+wzc]&&a[flag[0]+wzc]==a[flag[1]+wzc-1]+1)//先看看交换之后符不符合
{
change(flag[0],flag[1],wzc-1);
dfs(x+1,w+1);
change(flag[0],flag[1],wzc-1);
change(flag[0]+wzc,flag[1]+wzc,wzc-1);
dfs(x+1,w+1);
change(flag[0]+wzc,flag[1]+wzc,wzc-1);
}
if(a[flag[0]+wzc]-1==a[flag[1]+wzc*2-1]&&a[flag[0]]==a[flag[1]+wzc-1]+1)
{
change(flag[0],flag[1]+wzc,wzc-1);
dfs(x+1,w+1);
change(flag[0],flag[1]+wzc,wzc-1);
}
if(a[flag[1]+wzc]-1==a[flag[0]+wzc*2-1]&&a[flag[1]]==a[flag[0]+wzc-1]+1)
{
change(flag[0]+wzc,flag[1],wzc-1);
dfs(x+1,w+1);
change(flag[0]+wzc,flag[1],wzc-1);
}
return;
}
}
}
int main()
{
scanf("%d",&n);
miao=n;
jc[0]=1;
for(int i=1;i<=n;i++)
jc[i]=jc[i-1]*i;//预处理阶乘
n=1<<n;//现在n变为了序列长度了
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
dfs(0,0);//开搜
cout<<ans<<endl;
return 0;
}

rp++

[BZOJ3990]:[SDOI2015]排序(搜索)的更多相关文章

  1. [bzoj3990][SDOI2015]排序-搜索

    Brief Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<= ...

  2. BZOJ 3990: [SDOI2015]排序 [搜索]

    3990: [SDOI2015]排序 题意:\(2^n\)的一个排列,给你n种操作,第i种把每\(2^{i-1}\)个数看成一段,交换任意两段.问是这个序列有序的操作方案数,两个操作序列不同,当且仅当 ...

  3. [BZOJ3990][SDOI2015]排序(DFS)

    3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 902  Solved: 463[Submit][Status][ ...

  4. BZOJ3990 [SDOI2015]排序 【搜索】

    题目 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到 ...

  5. Bzoj3990 [SDOI2015]排序

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 651  Solved: 338 Description 小A有一个1-2^N的排列A[1..2^N], ...

  6. BZOJ 3990 [SDOI2015]排序 ——搜索

    [题目分析] 可以发现,操作的先后顺序是不影响结果的,那么答案就是n!的和. 可以从小的步骤开始搜索,使得每一个当前最小的块都是上升的数列,然后看看是否可行即可. 复杂度好像是4^n [代码](哪里写 ...

  7. BZOJ 3990: [SDOI2015]排序(搜索+剪枝)

    [SDOI2015]排序 Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1< ...

  8. 006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate

    006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate https://www.cnblogs.com/delphixx/p/1 ...

  9. 【LG3322】[SDOI2015]排序

    [LG3322][SDOI2015]排序 题面 洛谷 题解 交换顺序显然不影响答案,所以每种本质不同的方案就给答案贡献次数的阶乘. 从小往大的交换每次至多\(4\)中决策,复杂度\(O(4^n)\). ...

随机推荐

  1. HDU-5471 Count the Grid

    题目描述 一个矩阵中可以任意填\(m\)个数.给你\(N\)个小矩阵并且告诉你此矩阵中的最大值\(v\),求有多少种大矩阵满足所给条件.\((\%1e9+7)\) Input 包含\(T\)组数据. ...

  2. 洛谷 - P3469 - BLO-Blockade - 割点

    https://www.luogu.org/problem/P3469 翻译:一个原本连通的无向图,可以删除图中的一个点,求因为删除这个点所导致的不连通的有序点对的数量.或者说,删去这个点之后,各个连 ...

  3. 图数据库:AgensGraph

    文章目录 AgensGraph简介 官网及下载 安装AgensGraph 上传并解压 添加agens用户 配置.bashrc 初始化并启动 初始化数据库 启动数据库 执行交互式终端 图数据库基础概念 ...

  4. group_concat默认长度限制

    这几天做后台一个订单汇总数据报表时,发现当使用group_concat函数时,发现会漏掉数据,究其原因是因为这个函数有默认长度显示1024 可以修改mysql配置文件my.ini 设置group_co ...

  5. 在springboot中使用拦截器

    在springMVC中可以实现拦截器,是通过实现HandlerInterceptor接口,然后在springmvc-web.xml中配置就可以使用拦截器了.在springboot中拦截器也是一样的思想 ...

  6. 推荐JavaScript动态效果库

    翻译:疯狂的技术宅,原文:https://blog.bitsrc.io/11-javascript-animation-libraries-for-2018-9d7ac93a2c59 当我想要在网上找 ...

  7. [BZOJ1299]巧克力棒(博弈论,线性基)

    [BZOJ1299]巧克力棒 Description TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. ...

  8. C#基础知识之理解Cookie和Session机制

    会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端 ...

  9. Python之网路编程之-互斥锁与进程间的通信(IPC)及生产者消费者模型

    一.互斥锁 进程之间数据隔离,但是共享一套文件系统,因而可以通过文件来实现进程直接的通信,但问题是必须自己加锁处理. 注意:加锁的目的是为了保证多个进程修改同一块数据时,同一时间只能有一个修改,即串行 ...

  10. webpack 搭建React(手动搭建)

    前言 最近真的都是在瞎学,看到自己不是很明白的东西,都喜欢自己手动去敲1到3遍(晚上下班的时候咯), 瞧,React  基于webpack 搭建,react 官方有一套手脚架工具,我自己也搭建过确实挺 ...