Floating Point Math

Your language isn't broken, it's doing floating point math. Computers can only natively store integers, so they need some way of representing decimal numbers. This representation comes with some degree of inaccuracy. That's why, more often than not, .1 + .2 != .3.

Why does this happen?

It's actually pretty simple. When you have a base 10 system (like ours), it can only express fractions that use a prime factor of the base. The prime factors of 10 are 2 and 5. So 1/2, 1/4, 1/5, 1/8, and 1/10 can all be expressed cleanly because the denominators all use prime factors of 10. In contrast, 1/3, 1/6, and 1/7 are all repeating decimals because their denominators use a prime factor of 3 or 7. In binary (or base 2), the only prime factor is 2. So you can only express fractions cleanly which only contain 2 as a prime factor. In binary, 1/2, 1/4, 1/8 would all be expressed cleanly as decimals. While, 1/5 or 1/10 would be repeating decimals. So 0.1 and 0.2 (1/10 and 1/5) while clean decimals in a base 10 system, are repeating decimals in the base 2 system the computer is operating in. When you do math on these repeating decimals, you end up with leftovers which carry over when you convert the computer's base 2 (binary) number into a more human readable base 10 number.

Below are some examples of sending .1 + .2 to standard output in a variety of languages.

read more: | wikipedia | IEEE 754 | Stack Overflow | What Every Computer Scientist Should Know About Floating-Point Arithmetic

Language Code Result
ABAP
WRITE / CONV f( '.1' + '.2' ).

And

WRITE / CONV decfloat16( '.1' + '.2' ).

0.30000000000000004

And

0.3

Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure Sum is
A : Float := 0.1;
B : Float := 0.2;
C : Float := A + B;
begin
Put_Line(Float'Image(C));
Put_Line(Float'Image(0.1 + 0.2));
end Sum;

3.00000E-01

3.00000E-01

APL
0.1 + 0.2

0.30000000000000004

AutoHotkey
MsgBox, % 0.1 + 0.2

0.300000

awk
echo | awk '{ print 0.1 + 0.2 }'

0.3

bc
0.1 + 0.2

0.3

C
#include<stdio.h>
int main(int argc, char** argv) {
printf("%.17f\n", .1+.2);
return 0;
}

0.30000000000000004

Clojure
(+ 0.1 0.2)

0.30000000000000004

Clojure supports arbitrary precision and ratios. (+ 0.1M 0.2M) returns 0.3M, while (+ 1/10 2/10) returns 3/10.

ColdFusion
<cfset foo = .1 + .2>
<cfoutput>#foo#</cfoutput>

0.3

Common Lisp
(+ .1 .2)

And

(+ 1/10 2/10)

And

(+ 0.1d0 0.2d0)

And

(- 1.2 1.0)

0.3

And

3/10

And

0.30000000000000004d0

And

0.20000005

CL’s spec doesn’t actually even require radix 2 floats (let alone specifically 32-bit singles and 64-bit doubles), but the high-performance implementations all seem to use IEEE floats with the usual sizes. This was tested on SBCL and ECL in particular.

C++
#include <iomanip>
std::cout << std::setprecision(17) << 0.1 + 0.2

0.30000000000000004

Crystal
puts 0.1 + 0.2

And

puts 0.1_f32 + 0.2_f32

0.30000000000000004

And

0.3

C#
Console.WriteLine("{0:R}", .1 + .2);

And

Console.WriteLine("{0:R}", .1m + .2m);

0.30000000000000004

And

0.3

C# has support for 128-bit decimal numbers, with 28-29 significant digits of precision. Their range, however, is smaller than that of both the single and double precision floating point types. Decimal literals are denoted with the m suffix.

D
import std.stdio;

void main(string[] args) {
writefln("%.17f", .1+.2);
writefln("%.17f", .1f+.2f);
writefln("%.17f", .1L+.2L);
}

0.29999999999999999

0.30000001192092896

0.30000000000000000

Dart
print(.1 + .2);

0.30000000000000004

dc
0.1 0.2 + p

.3

Delphi XE5
writeln(0.1 + 0.2);

3.00000000000000E-0001

Elixir
IO.puts(0.1 + 0.2)

0.30000000000000004

Elm
0.1 + 0.2

0.30000000000000004

elvish
+ .1 .2

0.30000000000000004

elvish uses Go’s double for numerical operations.

Emacs Lisp
(+ .1 .2)

0.30000000000000004

Erlang
io:format("~w~n", [0.1 + 0.2]).

0.30000000000000004

FORTRAN
program FLOATMATHTEST
real(kind=4) :: x4, y4
real(kind=8) :: x8, y8
real(kind=16) :: x16, y16
! REAL literals are single precision, use _8 or _16
! if the literal should be wider.
x4 = .1; x8 = .1_8; x16 = .1_16
y4 = .2; y8 = .2_8; y16 = .2_16
write (*,*) x4 + y4, x8 + y8, x16 + y16
end

0.300000012

0.30000000000000004

0.300000000000000000000000000000000039

Gforth
0.1e 0.2e f+ f.

0.3

GHC (Haskell)
* 0.1 + 0.2 :: Double

And

* 0.1 + 0.2 :: Float

* 0.30000000000000004

And

* 0.3

Haskell supports rational numbers. To get the math right, 0.1 + 0.2 :: Rational returns 3 % 10, which is exactly 0.3.

Go
package main
import "fmt"
func main() {
fmt.Println(.1 + .2)
var a float64 = .1
var b float64 = .2
fmt.Println(a + b)
fmt.Printf("%.54f\n", .1 + .2)
}

0.3

0.30000000000000004

0.299999999999999988897769753748434595763683319091796875

Go numeric constants have arbitrary precision.

Groovy
println 0.1 + 0.2

0.3

Literal decimal values in Groovy are instances of java.math.BigDecimal

Hugs (Haskell)
0.1 + 0.2

0.3

Io
(0.1 + 0.2) print

0.3

Java
System.out.println(.1 + .2);

And

System.out.println(.1F + .2F);

0.30000000000000004

And

0.3

Java has built-in support for arbitrary precision numbers using the BigDecimal class.

JavaScript
console.log(.1 + .2);

0.30000000000000004

The decimal.js library provides an arbitrary-precision Decimal type for JavaScript.

Julia
.1 + .2

0.30000000000000004

Julia has built-in rational numbers support and also a built-in arbitrary-precision BigFloat data type. To get the math right, 1//10 + 2//10 returns 3//10.

K (Kona)
0.1 + 0.2

0.3

Lua
print(.1 + .2)

And

print(string.format("%0.17f", 0.1 + 0.2))

0.3

And

0.30000000000000004

Mathematica
0.1 + 0.2

0.3

Mathematica has a fairly thorough internal mechanism for dealing with numerical precision and supports arbitrary precision.

Matlab
0.1 + 0.2

And

sprintf('%.17f',0.1+0.2)

0.3

And

0.30000000000000004

MySQL
SELECT .1 + .2;

0.3

Nim
echo(0.1 + 0.2)

0.3

Objective-C
#import <Foundation/Foundation.h>
int main(int argc, const char * argv[]) {
@autoreleasepool {
NSLog(@"%.17f\n", .1+.2);
}
return 0;
}

0.30000000000000004

OCaml
0.1 +. 0.2;;

float = 0.300000000000000044

Perl 5
perl -E 'say 0.1+0.2'

And

perl -e 'printf q{%.17f}, 0.1+0.2'

0.3

And

0.30000000000000004

Perl 6
perl6 -e 'say 0.1+0.2'

And

perl6 -e 'say (0.1+0.2).base(10, 17)'

And

perl6 -e 'say 1/10+2/10'

And

perl6 -e 'say (0.1.Num + 0.2.Num).base(10, 17)'

0.3

And

0.3

And

0.3

And

0.30000000000000004

Perl 6, unlike Perl 5, uses rationals by default, so .1 is stored something like { numerator => 1, denominator => 10 }. To actually trigger the behavior, you must force the numbers to be of type Num (double in C terms) and use the base function instead of the sprintf or fmt functions (since those functions have a bug that limits the precision of the output).

PHP
echo .1 + .2;
var_dump(.1 + .2);

0.3 float(0.30000000000000004441)

PHP echo converts 0.30000000000000004441 to a string and shortens it to “0.3”. To achieve the desired floating point result, adjust the precision ini setting: ini_set(“precision”, 17).

PicoLisp
[load "frac.min.l"]  # https://gist.github.com/6016d743c4c124a1c04fc12accf7ef17

And

[println (+ (/ 1 10) (/ 2 10))]

(/ 3 10)

You must load file “frac.min.l”.

Postgres
SELECT select 0.1::float + 0.2::float;

0.3

Powershell
PS C:\>0.1 + 0.2

0.3

Prolog (SWI-Prolog)
?- X is 0.1 + 0.2.

X = 0.30000000000000004.

Pyret
0.1 + 0.2

And

~0.1 + ~0.2

0.3

And

~0.30000000000000004

Pyret has built-in support for both rational numbers and floating points. Numbers written normally are assumed to be exact. In contrast, RoughNums are represented by floating points, and are written with a ~ in front, to indicate that they are not precise answers. (The ~ is meant to visually evoke hand-waving.) Therefore, a user who sees a computation produce ~0.30000000000000004knows to treat the value with skepticism. RoughNums also cannot be compared directly for equality; they can only be compared up to a given tolerance.

Python 2
print(.1 + .2)

And

.1 + .2

And

float(decimal.Decimal(".1") + decimal.Decimal(".2"))

And

float(fractions.Fraction('0.1') + fractions.Fraction('0.2'))

0.3

And

0.30000000000000004

And

0.3

And

0.3

Python 2’s “print” statement converts 0.30000000000000004 to a string and shortens it to “0.3”. To achieve the desired floating point result, use print(repr(.1 + .2)). This was fixed in Python 3 (see below).

Python 3
print(.1 + .2)

And

.1 + .2

And

float(decimal.Decimal('.1') + decimal.Decimal('.2'))

And

float(fractions.Fraction('0.1') + fractions.Fraction('0.2'))

0.30000000000000004

And

0.30000000000000004

And

0.3

And

0.3

Python (both 2 and 3) supports decimal arithmetic with the decimal module, and true rational numbers with the fractions module.

R
print(.1+.2)

And

print(.1+.2, digits=18)

0.3

And

0.30000000000000004

Racket (PLT Scheme)
(+ .1 .2)

And

(+ 1/10 2/10)

0.30000000000000004

And

3/10

Ruby
puts 0.1 + 0.2

And

puts 1/10r + 2/10r

0.30000000000000004

And

3/10

Ruby supports rational numbers in syntax with version 2.1 and newer directly. For older versions use Rational.

Ruby also has a library specifically for decimals: BigDecimal.

Rust
extern crate num;
use num::rational::Ratio;
fn main() {
println!("{}", 0.1 + 0.2);
println!("1/10 + 2/10 = {}", Ratio::new(1, 10) + Ratio::new(2, 10));
}

0.30000000000000004

And

1/10 + 2/10 = 3/10

Rust has rational number support from the num crate.

SageMath
.1 + .2

And

RDF(.1) + RDF(.2)

And

RBF('.1') + RBF('.2')

And

QQ('1/10') + QQ('2/10')

0.3

And

0.30000000000000004

And

[“0.300000000000000 +/- 1.64e-16”]

And

3/10

SageMath supports various fields for arithmetic: Arbitrary Precision Real NumbersRealDoubleFieldBall ArithmeticRational Numbers, etc.

scala
scala -e 'println(0.1 + 0.2)'

And

scala -e 'println(0.1F + 0.2F)'

And

scala -e 'println(BigDecimal("0.1") + BigDecimal("0.2"))'

0.30000000000000004

And

0.3

And

0.3

Smalltalk
0.1 + 0.2.

0.30000000000000004

Swift
0.1 + 0.2

And

NSString(format: "%.17f", 0.1 + 0.2)

0.3

And

0.30000000000000004

TCL
puts [expr .1 + .2]

0.30000000000000004

Turbo Pascal 7.0
writeln(0.1 + 0.2);

3.0000000000E-01

Vala
static int main(string[] args) {
stdout.printf("%.17f\n", 0.1 + 0.2);
return 0;
}

0.30000000000000004

Visual Basic 6
a# = 0.1 + 0.2: b# = 0.3
Debug.Print Format(a - b, "0." & String(16, "0"))
Debug.Print a = b

0.0000000000000001

False

Appending the identifier type character # to any identifier forces it to Double.

WebAssembly (WAST)
(func $add_f32 (result f32)
f32.const 0.1
f32.const 0.2
f32.add)
(export "add_f32" (func $add_f32))

And

(func $add_f64 (result f64)
f64.const 0.1
f64.const 0.2
f64.add)
(export "add_f64" (func $add_f64))

0.30000001192092896

And

0.30000000000000004

https://webassembly.studio/?f=r739k6d6q4t

zsh
echo "$((.1+.2))"

0.30000000000000004

I am Erik Wiffin. You can contact me at: erik.wiffin.com or erik.wiffin@gmail.com.

This project is on github. If you think this page could be improved, send me a pull request.

Floating Point Math的更多相关文章

  1. Brief Tour of the Standard Library

    10.1. Operating System Interface The os module provides dozens of functions for interacting with the ...

  2. Awk by Example--转载

    原文地址: http://www.funtoo.org/Awk_by_Example,_Part_1?ref=dzone http://www.funtoo.org/Awk_by_Example,_P ...

  3. C++ QUICK REFERENCE

    C++ string 用法详解 字符串分割(C++)  C++ QUICK REFERENCE Matt Mahoney, mmahoney@cs.fit.edu DECLARATIONS enum ...

  4. net programming guid

    Beej's Guide to Network Programming Using Internet Sockets Brian "Beej Jorgensen" Hallbeej ...

  5. VS2012下基于Glut 矩阵变换示例程序:

    也可以使用我们自己的矩阵运算来实现OpenGL下的glTranslatef相应的旋转变换.需要注意的是OpenGL下的矩阵是列优先存储的. 示例通过矩阵运算使得圆柱或者甜圈自动绕Y轴旋转,可以单击鼠标 ...

  6. [Python] 01 - Number

    故事背景 一.大纲 如下,chapter4 是个概览,之后才是具体讲解. 二. 编译过程 Ref: http://www.dsf.unica.it/~fiore/LearningPython.pdf

  7. JavaScript-Tool:Moment.js

    ylbtech-JavaScript-Tool:Moment.js Parse, validate, manipulate, and display dates and times in JavaSc ...

  8. Delphi 64与32位的差异

    Delphi 64与32位的差异   最近,Delphi推出了64位预览版本, 我做为一个忠实的Delphier, 看到这消息后,第一时间学习,并写下这个做为以后的参考资料. 相同点: 在Delphi ...

  9. [Python] 01 - Number and Matrix

    故事背景 一.大纲 如下,chapter4 是个概览,之后才是具体讲解. 二. 编译过程 Ref: http://www.dsf.unica.it/~fiore/LearningPython.pdf

随机推荐

  1. dhcp协议简介

    协议分析 - DHCP协议解码详解 DHCP协议简介 DHCP,全称是 Dynamic Host Configuration Protocol﹐中文名为动态主机配置协议,它的前身是 BOOTP,它工作 ...

  2. thinkphp5+layui多图片上传

    准备资料 下载layui <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  3. 传输层协议之TCP/UDP

    1.UDP UDP协议是面向无连接的,即不需要在正式传递数据前先链接双方,UDP协议只是数据报文的搬运工,不保证有序且不丢失的传递到对端,且UDP协议无任何控制流量的算法,UDP相对于TCP更加轻便. ...

  4. 关于strcpy的安全函数的选择

    1)如果整个程序,在进行字符拷贝时,这个拷贝字符串的完整性,不影响整个程 序的运行,可以让其截取一部分字符串,程序继续执行.那么我们就可以选择安全 函数:strncpy_s 2)如果在进行字符串拷贝时 ...

  5. Vim安装插件支持 MarkDown 语法、实时预览等

    使用 markdown-preview.vim 插件可以实时通过浏览器预览 markdown 文件 使用该插件需要 vim 支持py2/py3 安装 使用 vim-plug: 在 .vimrc 或 i ...

  6. 页面中获取 iframe 中的值

    3.页面中获取 iframe 中的值 var obj=document.getElementsByClassName(".ke-edit-iframe").contentWindo ...

  7. 使用parted 创建一个大于2T的分区

    1.查看现有分区 parted -l fdisk   -l     2.对/dev/sdb分一个区 [root@test ~]# parted /dev/sdb   (parted) mkpart  ...

  8. RHEL6查看运行级别和grub加密阻止进入单用户模式

    1.查看当前运行级别 [root@cluster01 ~]# cat /etc/redhat-release Red Hat Enterprise Linux Server release 6.5 ( ...

  9. 用python实现简单的计算器(加减乘除小括号等)

    需求:实现能计算类似 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) ...

  10. Ubuntu 安装uwsgi出错

    1.分析了下,感觉是gcc除了问题,百度了一下,发现有类似的解决办法,记录一下. Collecting uwsgi Using cached https://files.pythonhosted.or ...