HDU 6582 Path
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 244 Accepted Submission(s): 50
Problem Description
After doing some research on the neighbourhood, Tom found that the neighbourhood consists of exactly n houses, and some of them are connected with directed road. To visit his girlfriend, Jerry needs to start from his house indexed 1 and go along the shortest path to hers, indexed n.
Now Tom wants to block some of the roads so that Jerry has to walk longer to reach his girl's home, and he found that the cost of blocking a road equals to its length. Now he wants to know the minimum total cost to make Jerry walk longer.
Note, if Jerry can't reach his girl's house in the very beginning, the answer is obviously zero. And you don't need to guarantee that there still exists a way from Jerry's house to his girl's after blocking some edges.
Input
Each test case starts with a line containing two numbers n,m(1≤n,m≤10000), the number of houses and the number of one-way roads in the neighbourhood.
m lines follow, each of which consists of three integers x,y,c(1≤x,y≤n,1≤c≤109), denoting that there exists a one-way road from the house indexed x to y of length c.
Output
Sample Input
Sample Output
Source
Recommend
吐槽
这么过分,一定要发朋友圈博客。杭电多校第一场(见上面那个source),AC 1 题收场,就是这题。下两场可以休息了。本来第四题二分(https://www.cnblogs.com/wawcac-blog/p/11229277.html)也不难,但自己就是想不到。感觉自己现在还只会做板题。别人觉得难度更低的题,我就是想不出来。CF还是要接着打啊……
题意
原题在这https://www.cnblogs.com/wawcac-blog/p/7012556.html,上学路线的第二问,思路也在那了。只是数据范围增大了20倍,于是把Floyd改成dijkstra,几个int改成long long。理论上dinic是要T的,但它就是AC了……
源代码
#include <queue>
#include <stdio.h>
#include <string.h>
#include <algorithm> int T;
int n, m; struct Edge
{
int nxt, to;
long long w;
} e[], f[];
int cnt = , head[], fcnt = , fhead[]; //正向图与反向图
void add(int u, int v, long long w)
{
e[cnt] = {head[u], v, w};
head[u] = cnt++;
f[fcnt] = {fhead[v], u, w};
fhead[v] = fcnt++;
} long long dis[], fdis[];
bool vis[];
struct DijkHeap
{
int u;
long long d;
bool operator<(const DijkHeap &a) const
{
return d > a.d;
}
} dijktemp;
void dijkstra()
{
std::priority_queue<DijkHeap> q;
memset(dis, 0x7f, sizeof(long long) * (n + ));
memset(vis, , sizeof(bool) * (n + ));
dis[] = ;
q.push({, });
while (!q.empty())
{
dijktemp = q.top();
q.pop();
int u = dijktemp.u;
long long d = dijktemp.d;
vis[u] = ;
for (int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].to;
if (vis[v])
continue;
if (dis[v] > e[i].w + d)
{
dis[v] = e[i].w + d;
q.push({v, dis[v]});
}
}
} memset(fdis, 0x7f, sizeof(long long) * (n + ));
memset(vis, , sizeof(bool) * (n + ));
fdis[n] = ;
q.push({n, });
while (!q.empty())
{
dijktemp = q.top();
q.pop();
int u = dijktemp.u;
long long d = dijktemp.d;
vis[u] = ;
for (int i = fhead[u]; i; i = f[i].nxt)
{
int v = f[i].to;
if (vis[v])
continue;
if (fdis[v] > f[i].w + d)
{
fdis[v] = f[i].w + d;
q.push({v, fdis[v]});
}
}
}
} struct WEdge//最短路图
{
int nxt, to;
long long flow;
} we[];
int whead[] = {}, wcnt = ;
void wadd(int u, int v, long long f)
{
we[wcnt] = {whead[u], v, f};
whead[u] = wcnt++;
we[wcnt] = {whead[v], u, };
whead[v] = wcnt++;
} int dep[] = {};
bool bfs()
{
memset(dep, , sizeof(int) * (n + ));
std::queue<int> q;
dep[] = ;
q.push();
while (!q.empty())
{
int u = q.front();
q.pop();
for (int i = whead[u]; i; i = we[i].nxt)
{
long long v = we[i].to;
if (!dep[v] && we[i].flow)
{
dep[v] = dep[u] + ;
q.push(v);
}
}
}
return dep[n] != ;
} long long dfs(int u, long long fflow)
{
if (u == n || fflow == 0LL)
return fflow;
long long sum = ;
for (int i = whead[u]; i; i = we[i].nxt)
{
int v = we[i].to;
if (dep[v] == dep[u] + && we[i].flow)
{
long long delta = dfs(v, std::min(fflow - sum, we[i].flow));
sum += delta;
we[i].flow -= delta;
we[i ^ ].flow += delta;
if (fflow <= sum)
break;
}
}
if (!sum)
dep[u] = -;
return sum;
} long long dinic()
{
long long ans = ;
while (bfs())
{
while (long long temp = dfs(, 0x7f7f7f7f7f7f7f7f))
ans += temp;
}
return ans;
} void init()
{
cnt = fcnt = ;
wcnt = ;
memset(head, , sizeof(int) * (n + ));
memset(fhead, , sizeof(int) * (n + ));
memset(whead, , sizeof(int) * (n + ));
} int main()
{
//freopen("test.in","r",stdin);
scanf("%d", &T);
while (T--)
{
init();
scanf("%d%d", &n, &m);
for (int i = , u, v, w; i <= m; i++)
{
scanf("%d%d%d", &u, &v, &w);
add(u, v, (long long)w);
}
dijkstra();
for (int u = ; u <= n; u++)
{
for (int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].to;
if (dis[u] + e[i].w + fdis[v] == dis[n])
{
wadd(u, v, e[i].w);
//printf("***%d %d %lld\n", u, v, e[i].w);
}
}
}
printf("%lld\n", dinic());
}
return ;
}
HDU 6582 Path的更多相关文章
- HDU - 6582 Path (最短路+最小割)
题意:给定一个n个点m条边的有向图,每条边有个长度,可以花费等同于其长度的代价将其破坏掉,求最小的花费使得从1到n的最短路变长. 解法:先用dijkstra求出以1为源点的最短路,并建立最短路图(只保 ...
- 2019HDU多校第一场 6582 Path 【最短路+最大流最小割】
一.题目 Path 二.分析 首先肯定要求最短路,然后如何确定所有的最短路其实有多种方法. 1 根据最短路,那么最短路上的边肯定是可以满足$dist[from] + e.cost = dist[to] ...
- [最短路,最大流最小割定理] 2019 Multi-University Training Contest 1 Path
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6582 Path Time Limit: 2000/1000 MS (Java/Others) Mem ...
- hdu 1973 Prime Path
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Description The ministers of the cabi ...
- hdu 1839 Delay Constrained Maximum Capacity Path 二分/最短路
Delay Constrained Maximum Capacity Path Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu. ...
- hdu 3631 Shortest Path(Floyd)
题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...
- HDU 5492(DP) Find a path
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5492 题目大意是有一个矩阵,从左上角走到右下角,每次能向右或者向下,把经过的数字记下来,找出一条路径是 ...
- [HDU 1973]--Prime Path(BFS,素数表)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Time Limit: 5000/1000 MS (Java/Others ...
- HDU - 2290 Find the Path(最短路)
HDU - 2290 Find the Path Time Limit: 5000MS Memory Limit: 64768KB 64bit IO Format: %I64d & % ...
随机推荐
- 网络编程.TCP分块接收数据(AIO)(IOCP)
1.前提:每次投递的接收缓冲区 在它返回后 就不再用它进行2次投递了 于是 接收缓冲区 在返回的时候,数据都是 从接收缓冲区的偏移[0]处开始填充的,且 接收缓冲区 可能被填满 也可能未被填满. 1. ...
- 20191127 Spring Boot官方文档学习(4.12)
4.12.缓存(Caching) Spring框架提供了对应用程序透明添加缓存的支持.从本质上讲,抽象将缓存应用于方法,从而根据缓存中可用的信息减少执行次数.缓存逻辑是透明应用的,不会对调用者造成任何 ...
- [转帖]IDC发布2018下半年中国公有云市场报告
IDC发布2018下半年中国公有云市场报告:AWS以6.4%的份额名列第四 http://www.itpub.net/2019/05/06/1793/ 电信的公有云 好像是用的 华为的技术. AWS在 ...
- hive数据去重
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能 hive的元数据存储:通常是存储在关系数据库如 mysql(推荐) , derby(内嵌 ...
- CF573E Bear and Bowling
题目 我们设\(f_{i,j}\)表示前\(i\)个数中选\(j\)个的最大值. 那么显然有\(f_{i,j}=max(f_{i-1,j},f_{i-1,j-1}+j*a_i)\). 这个东西我们首先 ...
- [BZOJ 4332] [JSOI2012]分零食(DP+FFT)
[BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...
- 通过编写串口助手工具学习MFC过程——(五)添加CheckBox复选框
通过编写串口助手工具学习MFC过程 因为以前也做过几次MFC的编程,每次都是项目完成时,MFC基本操作清楚了,但是过好长时间不再接触MFC的项目,再次做MFC的项目时,又要从头开始熟悉.这次通过做一个 ...
- Rust学习笔记1
这是一份不错的rust教程,目前包括4个block和4个project.全部完成后可以用rust实现一个简单的key-value存储引擎. 注意:Windows下rust貌似会遇到一些bug,强烈建议 ...
- R语言 绘图——条形图可以将堆积条形图与百分比堆积条形图配合使用
在使用堆积条形图时候,新增一个百分比堆积条形图,可以加深读者印象. 封装一个function函数后只需要在调用的数据上改一下pos=‘fill’的代码即可.比较方便. 案例: # 封装函数 fun1& ...
- 使ApacheBench支持multi-url
目录 1.下载Apache httpd相关源码包以及针对ab工具的patch包 2.编译安装apr 3.编译安装apr-util 4.替换httpd源码里面的ab.c文件 5.编译安装httpd 6. ...