以后碰到这种题就应该往对称性想:设x的对称数x‘是1e6-x+1

对于任意一组对称数x+x'-2=1e6-1,2e6-(x+x')=1e6-1,即X集合Y集合同时加上任意一组对称数都是可以的

枚举每个xi,如果其对称数1e6-xi+1不在集合X中,那么在Y中添加这个对称数即可,正确性显然

反之如果对称数在集合X中,则X集合的和多了1e6,我们再去找一组不在集合中的对称数,将这组数加入集合Y中,等价于Y集合的数和也多了1e6

#include <bits/stdc++.h>
#define maxn 2000010
#define maxm 110
using namespace std;
int S, n, m, a[maxn], vis[maxn], ans[maxn], v[maxn]; inline int read(){
int s = , w = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -;
for (; isdigit(c); c = getchar()) s = (s << ) + (s << ) + (c ^ );
return s * w;
} int main(){
S = , n = read();
for (int i = ; i <= n; ++i) a[i] = read(), v[a[i]] = ;
for (int i = , j = ; i <= n; ++i){
if (vis[a[i]]) continue;
if (!v[S + - a[i]]) ans[++m] = S + - a[i]; else{
while (v[j] || v[S + - j]) ++j;
ans[++m] = j, ans[++m] = S + - j;
vis[S + - a[i]] = ;
++j;
}
}
printf("%d\n", m);
for (int i = ; i <= m; ++i) printf("%d ", ans[i]);
return ;
}

对称性——cf405d的更多相关文章

  1. 重载equals方法时要遵守的通用约定--自反性,对称性,传递性,一致性,非空性

    本文涉及到的概念 1.为什么重载equals方法时,要遵守通用约定 2.重载equals方法时,要遵守哪些通用约定   为什么重载equals方法时,要遵守通用约定 Object类的非final方法都 ...

  2. [物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性

    设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对 ...

  3. [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性

    试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性. 证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{ ...

  4. rosetta对称性文件(rosetta symmetry file)的产生及应用

    针对对称性PDB 3UKM,使用make_symmdef_file.pl脚本,可以执行产生对称单元及对称文件: $> $ROSETTA3/src/apps/public/symmetry/mak ...

  5. AtCoder3857:Median Sum (Bitset优化背包&&对称性求中位数)

    Median Sum You are given N integers A1, A2, ..., AN. Consider the sums of all non-empty subsequences ...

  6. 由对称性解2-SAT问题

    由对称性解2-SAT问题 (by 伍昱,03年IOI国家集训队论文ppt) 2-SAT: 2-SAT就是2判定性问题,是一种特殊的逻辑判定问题. 2-SAT问题有何特殊性?该如何求解? 我们从一道例题 ...

  7. DES对称性加密

    using System; using System.Security.Principal; using System.Security.Permissions; using System.Secur ...

  8. C# 对密码等数据进行对称性加密解密

    类: /// <summary> /// DESEncrypt加密解密算法. /// </summary> public class DESEncrypt { private ...

  9. 旺财速啃H5框架之Bootstrap(四)

    上一篇<<旺财速啃H5框架之Bootstrap(三)>>已经把导航做了,接下来搭建内容框架.... 对于不规整的网页,要做成自适应就有点玩大了.... 例如下面这种版式的页面. ...

随机推荐

  1. tp框架基础控制器调用方法

    public function indd(){ //调用该控制器下的某个方法 $this ->index(); //跨控制器调用 $k = A("index");// 创建控 ...

  2. windows环境下如何安装memcached教程

    Memcached 是一个开源免费高性能的分布式内存对象缓存系统,能够加快网站访问速度和减轻数据库压力,本文向大家介绍下windows环境下如何安装memcached. 工具/原料   memcach ...

  3. Gson extend 思路

    package org.rx.core.internal; import com.google.gson.*; import net.sf.cglib.proxy.Enhancer; import n ...

  4. Linux C遇到的常见错误

    此随笔主要记录一些Linux C遇到的常见错误,便于debug问题或自己编程时,避免发生类似的错误或问题,后续会持续更新.... 1.内存泄露问题 内存泄露是由于内存没有释放导致程序耗内存一直增大,引 ...

  5. Redis 单机模式,主从模式,哨兵模式(sentinel),集群模式(cluster),第三方模式优缺点分析

    Redis 的几种常见使用方式包括: 单机模式 主从模式 哨兵模式(sentinel) 集群模式(cluster) 第三方模式 单机模式 Redis 单副本,采用单个 Redis 节点部署架构,没有备 ...

  6. Openstack组件部署 — Overview和前期环境准备

    目录 目录 前言 软件环境 Openstack 简介 Openstack 架构 Openstack Install Overview 创建Node虚拟机 环境准备 基础设置 Install OpenS ...

  7. 高水线 High water mark(HWM)

    所有的Oracle表都有一个容纳数据的上限(很像一个水库历史最高的水位),我们把这个上限称为“High water mark"或HWM.这个HWM是一个标记(专门有一个数据块来记录高水标记等 ...

  8. composer 配置镜像

    阿里云镜像:composer config -g repo.packagist composer https://mirrors.aliyun.com/composer/ 腾讯云镜像:composer ...

  9. 39-python基础-python3-字典常用方法-get()

    在访问一个键的值之前,检查该键是否存在于字典中,这很麻烦. 好在,字典有一个 get()方法,它有两个参数:要取得其值的键,以及如果该键不存在时,返回的备用值. dict.get(键,默认值) 实例- ...

  10. Python之switch

    首先声明,Python没有switch!!! 通过函数与字典的结合实现 #!/usr/bin/python #coding:utf-8 from __future__ import division ...