问题描述

For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

输入格式

* Line 1: Four space-separated integers: N, T, S, and E

* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

输出格式

* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

样例输入

2 6 6 4

11 4 6

4 4 8

8 4 9

6 6 8

2 6 9

3 8 9

样例输出

10

题目大意

给出一张无向连通图,求S到E经过k条边的最短路。

解析

倍增Floyd模版题。利用矩阵快速幂的形式可以在\(log\)的时间内处理经过k条路径的最短路。

虽然一共有1000000个点,但是因为只有100条边,可以直接用100条边的端点建图,离散化编号即可。

代码

#include <iostream>
#include <cstdio>
#define int long long
#define N 1000002
using namespace std;
const int inf=1<<30;
struct Matrix{
int a[500][500];
}S;
int n,m,s,t,i,j,id[N],cnt;
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
Matrix mult(Matrix a,Matrix b)
{
Matrix c;
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++) c.a[i][j]=inf;
}
for(int k=1;k<=cnt;k++){
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++) c.a[i][j]=min(c.a[i][j],a.a[i][k]+b.a[k][j]);
}
}
return c;
}
Matrix poww(Matrix a,int b)
{
b--;
Matrix ans=a,base=a;
while(b){
if(b&1) ans=mult(ans,base);
base=mult(base,base);
b>>=1;
}
return ans;
}
signed main()
{
n=read();m=read();s=read();t=read();
for(i=1;i<=2*m;i++){
for(j=1;j<=2*m;j++) S.a[i][j]=inf;
}
for(i=1;i<=m;i++){
int w=read(),u=read(),v=read();
if(!id[u]) id[u]=++cnt;
if(!id[v]) id[v]=++cnt;
S.a[id[u]][id[v]]=S.a[id[v]][id[u]]=w;
}
Matrix ans=poww(S,n);
cout<<ans.a[id[s]][id[t]]<<endl;
return 0;
}

[洛谷P2886] 牛继电器Cow Relays的更多相关文章

  1. 洛谷 [P2886] 牛继电器Cow Relays

    最短路 + 矩阵快速幂 我们可以改进矩阵快速幂,使得它适合本题 用图的邻接矩阵和快速幂实现 注意 dis[i][i] 不能置为 0 #include <iostream> #include ...

  2. 洛谷P2886牛继电器

    传送门啦 倍增 $ Floyd $ 注意结构体里二维数组不能开到 $ 2000 $ #include <iostream> #include <cstdio> #include ...

  3. P2886 [USACO07NOV]牛继电器Cow Relays

    题目描述 For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race ...

  4. [USACO07NOV]牛继电器Cow Relays (最短路,DP)

    题目链接 Solution 非正解 似乎比较蛇啊,先个一个部分分做法,最短路+\(DP\). 在求最短路的堆或者队列中存储元素 \(dis_{i,j}\) 代表 \(i\) 这个节点,走了 \(j\) ...

  5. 洛谷P2886 [USACO07NOV]牛继电器Cow Relays

    题意很简单,给一张图,把基本的求起点到终点最短路改成求经过k条边的最短路. 求最短路常用的算法是dijkstra,SPFA,还有floyd. 考虑floyd的过程: c[i][j]=min(c[i][ ...

  6. 洛谷 P2886 [USACO07NOV]牛继电器Cow Relays

    题面 解题思路 ## floyd+矩阵快速幂,跟GhostCai爷打赌用不用离散化,最后完败..GhostCai真是tql ! 有个巧妙的方法就是将节点重新编号,因为与节点无关. 代码 #includ ...

  7. [LUOGU] P2886 [USACO07NOV]牛继电器Cow Relays

    https://www.luogu.org/problemnew/show/P2886 给定无向连通图,求经过k条边,s到t的最短路 Floyd形式的矩阵乘法,同样满足结合律,所以可以进行快速幂. 离 ...

  8. luogu题解 P2886 【牛继电器Cow Relays】-经过K边最短路&矩阵

    题目链接: https://www.luogu.org/problemnew/show/P2886 Update 6.16 最近看了下<算法导论>,惊奇地发现在在介绍\(APSP\) \( ...

  9. [USACO07NOV]牛继电器Cow Relays

    题目描述 给出一张无向连通图,求S到E经过k条边的最短路. 输入输出样例 输入样例#1: 2 6 6 4 11 4 6 4 4 8 8 4 9 6 6 8 2 6 9 3 8 9 输出样例#1: 10 ...

随机推荐

  1. 阶段2 JavaWeb+黑马旅游网_15-Maven基础_第4节 maven生命周期和概念模型图_09maven概念模型图

    项目自身的信息 项目运行所依赖的扎包 运行环境信息:tomcat啊,JDK啊这些都属于运行环境 一个jar包的坐标由三个最基本的信息组成. 第一部分就是依赖管理. 第二个部分

  2. 系统分析与设计HW4

    个人作业 用例建模 a. 阅读 Asg_RH 文档,绘制用例图. b. 选择你熟悉的定旅馆在线服务系统(或移动 APP),如绘制用例图.并满足以下要求: 对比 Asg_RH 用例图,请用色彩标注出创新 ...

  3. 一个JSON解析器

    来源 <JavaScript语言精粹(修订版)> 代码 <!DOCTYPE html> <html> <head> <meta charset=& ...

  4. 红帽学习笔记[RHCSA] 第一课[Shell、基础知识]

    关于Shell Shell是什么 Shell是系统的用户界面,提供了用户与内核进行交互操作的一种接口.它接收用户输入的命令并把它送入内核中执行. bash shell是大多数Linux的缺省shell ...

  5. [Web 前端] 022 js 的基本数据类型及使用

    1. Javascript 基本数据类型 1.1 分类 类型 释义 boolean 布尔类型,分 true 与 false number 整型,浮点型 string 字符类型 object 对象类型 ...

  6. SET ANSI_NULL ON 和 SET QUOTED_IDENTIFIFR ON

    本文转自:https://blog.csdn.net/qq112212qq/article/details/84578263 SET ANSI_NULL ON : 判断非空:where colunm ...

  7. PHP_OS的常见值

    PHP_OS是PHP中的一个预定义常量,表示当前操作系统.那么PHP_OS有哪些值可用呢??PHP_OS的值一般可以为:CYGWIN_NT-5.1,Darwin,FreeBSD,HP-UX,IRIX6 ...

  8. C++中的函数重载分析(一)

    1,重载是 C 语言到 C++ 语言的一个飞跃,C 语言中没有重载的概念,所有的函数 名是不允许有重复的,在 C++ 中因为引进了重载,所以函数名可以重复: 2,自然语言中的上下文: 1,你知道上面词 ...

  9. [BZOJ 4332] [JSOI2012]分零食(DP+FFT)

    [BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...

  10. Scrapy 教程(九)-日志系统

    最新版本的 scrapy 已经废弃了 scrapy.log 的使用,赞成显示调用python标准日志记录. Python 内建日志系统 import logging ### python 内建 log ...