竟然没有写过分数规划的题解

考前挣扎一发板子(

二分答案k 然后0/1分数规划的方法就是 分母乘过去然后贪心解决

注意实数二分的精度 一般估计一个次数比较好不然容易出现精度比较误差【惨痛教训

就做完了qwq

//Love and Freedom.
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 20021225
#define ll long long
#define db double
#define mxn 100010
#define eps 1e-6
using namespace std; int a[mxn],b[mxn];
db d[mxn]; int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
scanf("%d",&b[i]);
db r = 1e11, l = 0;
for(int i=1;i<=100;i++)
{
db mid = (l+r)/2.0;
for(int j=1;j<=n;j++)
d[j] = (db)a[j]-b[j]*mid;
sort(d+1,d+n+1); db tmp = 0;
for(int j=n;j>n-k;j--) tmp+=d[j];
if(tmp>-eps) l=mid+eps;
else r=mid-eps;
}
printf("%.4lf\n",l);
return 0;
}

LOJ149 0/1分数规划的更多相关文章

  1. poj 2976 Dropping tests 0/1分数规划

    0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> # ...

  2. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  3. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  4. poj2728 Desert King【最优比率生成树】【Prim】【0/1分数规划】

    含[最小生成树Prim]模板. Prim复杂度为$O(n^2),适用于稠密图,特别是完全图的最小生成树的求解.   Desert King Time Limit: 3000MS   Memory Li ...

  5. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  6. [SDOI2017]新生舞会 0/1分数规划

    ---题面--- 题解: 0/1分数规划,,,但是竟然有诡异的精度问题???因为这个被卡了好久 中途还写过一次KM,,,结果陷入死循环,,,我大概是写了一个假KM,,,于是放弃KM,回来调费用流 这个 ...

  7. bzoj3232圈地游戏——0/1分数规划+差分建模+判环

    Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意一个格点出发,沿着格线行走直到 ...

  8. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

  9. Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)

    题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...

随机推荐

  1. Hadoop学习之路(二)HDFS基础

    1.HDFS前言 HDFS:Hadoop Distributed File System,Hadoop分布式文件系统,主要用来解决海量数据的存储问题. 设计思想 分散均匀存储 dfs.blocksiz ...

  2. php面试专题---19、MySQL高可扩展和高可用考点

    php面试专题---19.MySQL高可扩展和高可用考点 一.总结 一句话总结: 要区别分区和分库分表,分区的话对用户是透明的,分库分表的话需要程序员做点事情,主从数据库同步的话借助的是二进制日志 1 ...

  3. SqlServer 高级查询

    高级查询在数据库中用得是最频繁的,也是应用最广泛的. Ø 基本常用查询 --select select * from student;   --all 查询所有 select all sex from ...

  4. WebService登陆验证四种方式

    在这个WEB API横行的时代,讲WEB Service技术却实显得有些过时了,过时的技术并不代表无用武之地,有些地方也还是可以继续用他的,我之所以会讲解WEB Service,源于我最近面试时被问到 ...

  5. Content-Based Recommender System

    Content-Based Recommender System是基于产品(商品.网页)的内容.属性.关键字,以及目标用户的喜好.行为,这两部分数据来联合计算出,该为目标用户推荐其可能最感兴趣的产品. ...

  6. Java thread(1)

    这一部分主要讨论 java多线程的基本相关概念以及两种java线程的实现方式: 线程与进程: 这个操作系统书上介绍得很详细,这里就列出一些比较主要的: 线程: 线程本身有很少的资源,因为所拥有的资源较 ...

  7. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

  8. 基于各种基础数据结构的SPFA和各种优化

    一.基于各种数据结构的SPFA 以下各个数据均为不卡SPFA的最短路模板:P3371 [模板]单源最短路径(弱化版)的测试时间 1.STL队列:用时: 1106ms / 内存: 8496KB #inc ...

  9. P3806 【模板】点分治1(题解)(点分治)

    P3806 [模板]点分治1(题解)(点分治) 洛谷题目传送门 #include<iostream> #include<cstdlib> #include<cstdio& ...

  10. Leetcode Lect3 二分法总结

    二分法模板 非递归版本: public class Solution { /** * @param A an integer array sorted in ascending order * @pa ...