题面

给出一棵n个点的树,要求把它画在圆上,且边不相交,画法与排列一一对应(即旋转后相同的算不同种),求方案数。如下图是4个点的树\(T:V=\{1,2,3,4\},E=\{(1,2),(1,3),(2,4)\}\)的方案:

图片来自cf原题

分析

对于x的子树,我们发现x的子树上的节点在圆上一定是一个连续区间,否则会出现下图的情况

设deg[x]表示x的度数

对于非根节点x:

x有deg[x]-1个儿子,这些儿子排列的方案有\((deg[x]-1)!\)种,然后把根节点插到儿子与儿子相邻的任意一个位置,一共deg[x]个空,总答案为\((deg[x]-1)! \times deg[x]=deg[x]!\)

对于根节点x:

x本身的位置可以在圆上任选,有n种.x有deg[x]个儿子,排列方案为\(n \times deg[x]!\)

因此,总方案数为\(n \times\prod_{i=1}^n deg(i)!\)

代码

#include<iostream>
#include<cstdio>
#define maxn 200005
#define mod 998244353
using namespace std;
int n;
long long fact[maxn];
int deg[maxn]; int main(){
int u,v;
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d %d",&u,&v);
deg[u]++;
deg[v]++;
}
fact[0]=1;
for(int i=1;i<=n;i++){
fact[i]=fact[i-1]*i%mod;
}
long long ans=1;
for(int i=1;i<=n;i++){
ans*=fact[deg[i]];
ans%=mod;
}
ans*=n;
ans%=mod;
printf("%I64d\n",ans);
}

Codeforces 1172B(组合数学)的更多相关文章

  1. codeforces 1194F (组合数学)

    Codeforces 11194F (组合数学) 传送门:https://codeforces.com/contest/1194/problem/F 题意: 你有n个事件,你需要按照1~n的顺序完成这 ...

  2. CodeForces 407C 组合数学(详解)

    题面: http://codeforces.com/problemset/problem/407/C 一句话题意:给一个长度为n的序列g,m次操作,每次操作(l,r,k)表示将g[l]~g[r]的每个 ...

  3. Codeforces Round #439 (Div. 2) Problem C (Codeforces 869C) - 组合数学

    — This is not playing but duty as allies of justice, Nii-chan! — Not allies but justice itself, Onii ...

  4. Codeforces 722E 组合数学 DP

    题意:有一个n * m的棋盘,你初始在点(1, 1),你需要去点(n, m).你初始有s分,在这个棋盘上有k个点,经过一次这个点分数就会变为s / 2(向上取整),问从起点到终点的分数的数学期望是多少 ...

  5. codeforces 932E Team Work(组合数学、dp)

    codeforces 932E Team Work 题意 给定 \(n(1e9)\).\(k(5000)\).求 \(\Sigma_{x=1}^{n}C_n^xx^k\). 题解 解法一 官方题解 的 ...

  6. Codeforces - 1081C - Colorful Bricks - 简单dp - 组合数学

    https://codeforces.com/problemset/problem/1081/C 这道题是不会的,我只会考虑 $k=0$ 和 $k=1$ 的情况. $k=0$ 就是全部同色, $k=1 ...

  7. Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学

    Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...

  8. Codeforces 840C 题解(DP+组合数学)

    题面 传送门:http://codeforces.com/problemset/problem/840/C C. On the Bench time limit per test2 seconds m ...

  9. codeforces 1284C. New Year and Permutation(组合数学)

    链接:https://codeforces.com/problemset/problem/1284/C 题意:定义一个framed segment,在区间[l,r]中,max值-min值 = r - ...

随机推荐

  1. Windows10测试低版本IE方法

    前端开发工程师可能了解IETester是一款IE多版本兼容性测试软件,但是只支持Windows Xp,Vista,7,8系统,Windows10是不支持的,网上所说的开启.net framework ...

  2. 【串线篇】spring boot全面接管springMvc

    一.Spring MVC auto-configuration Spring Boot 自动配置好了SpringMVC 以下是SpringBoot对SpringMVC的默认配置:(WebMvcAutoC ...

  3. 解析 Java 反射题中一个有趣的坑

    public class Test { public void age(int age) { System.out.println("int age="+age); } publi ...

  4. 利用docker制作一个带有redis软件的镜像,供其他人使用

    1. 宿主机在etc/apt/下创建一个haha的文件夹 2.宿主机将haha文件夹映射到容器的虚拟系统中etc/apt/ 3. 此时,可以在宿主机和容器虚拟机中同步创建和删除文件 4. 将宿主机中的 ...

  5. springCloud 服务提供者应返回的统一的数据格式

    package com.zledu.commonentity.entity; import lombok.AllArgsConstructor;import lombok.Data; import j ...

  6. JS中判断一个数组是否有相同数据的

    页面中有多个<select> $("select").each(function(){ str.push($(this).val());}); // join() 方法 ...

  7. mac上如何搜索文件?

    在Mac上如果你用会了搜索功能那绝对是个事半功倍的技巧.因为Mac本身有强大的文件索引能力, 可以帮你快速的找到你需要的文件.就好比我要找到上周修改过的word文档应该怎么办? * 使用语音命令让Si ...

  8. Linux学习-MySQL的高可用性集群Galera Cluste

    一.Galera Cluste简介 1.Galera Cluster 集成了Galera插件的MySQL集群,是一种新型的,数据不共享的,高度冗余的高可用方案,目前Galera Cluster有两个版 ...

  9. Dubbo学习-7-dubbo配置文件优先级

    Dubbo配置加载流程 根据驱动方式的不同(比如Spring或裸API编程)配置形式上肯定会有所差异,具体参考XML配置.Annotation配置.API配置三篇文档.除了外围驱动方式上的差异,Dub ...

  10. web选择文件夹上传

    我们平时经常做的是上传文件,上传文件夹与上传文件类似,但也有一些不同之处,这次做了上传文件夹就记录下以备后用. 这次项目的需求: 支持大文件的上传和续传,要求续传支持所有浏览器,包括ie6,ie7,i ...