Father Christmas flymouse
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 3241   Accepted: 1099

Description

After retirement as contestant from WHU ACM Team, flymouse volunteered to do the odds and ends such as cleaning out the computer lab for training as extension of his contribution to the team. When Christmas came, flymouse played Father Christmas to give gifts to the team members. The team members lived in distinct rooms in different buildings on the campus. To save vigor, flymouse decided to choose only one of those rooms as the place to start his journey and follow directed paths to visit one room after another and give out gifts en passant until he could reach no more unvisited rooms.

During the days on the team, flymouse left different impressions on his teammates at the time. Some of them, like LiZhiXu, with whom flymouse shared a lot of candies, would surely sing flymouse’s deeds of generosity, while the others, like snoopy, would never let flymouse off for his idleness. flymouse was able to use some kind of comfort index to quantitize whether better or worse he would feel after hearing the words from the gift recipients (positive for better and negative for worse). When arriving at a room, he chould choose to enter and give out a gift and hear the words from the recipient, or bypass the room in silence. He could arrive at a room more than once but never enter it a second time. He wanted to maximize the the sum of comfort indices accumulated along his journey.

Input

The input contains several test cases. Each test cases start with two integers N and M not exceeding 30 000 and 150 000 respectively on the first line, meaning that there were N team members living in N distinct rooms and M direct paths. On the next N lines there are N integers, one on each line, the i-th of which gives the comfort index of the words of the team member in the i-th room. Then follow M lines, each containing two integers i and j indicating a directed path from the i-th room to the j-th one. Process to end of file.

Output

For each test case, output one line with only the maximized sum of accumulated comfort indices.

Sample Input

2 2
14
21
0 1
1 0

Sample Output

35

Hint

32-bit signed integer type is capable of doing all arithmetic.

Source


题意:多了每个节点分配一个权值,走一条路权值最大

还是求SCC缩点DP
很多题解用了spfa求DAG的最长路也可以
 
//16ms
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define C(x) memset(x,0,sizeof(x))
using namespace std;
const int N=,M=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u,v,w[N];
struct edge{
int v,ne;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int dfn[N],low[N],belong[N],dfc,scc,val[N];
int st[N],top;
void dfs(int u){
dfn[u]=low[u]=++dfc;
st[++top]=u;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!dfn[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!belong[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
scc++;
while(true){
int x=st[top--];
belong[x]=scc;
if(w[x]>) val[scc]+=w[x];
if(x==u) break;
}
}
}
void SCC(){
dfc=scc=;
C(dfn);C(low);C(belong);C(val);
top=;
for(int i=;i<=n;i++) if(!dfn[i]) dfs(i);
} edge es[N];
int hs[N],cs=;
inline void inss(int u,int v){
cs++;
es[cs].v=v;es[cs].ne=hs[u];hs[u]=cs;
}
void buildGraph(){
cs=;
C(hs);
for(int u=;u<=n;u++){
int a=belong[u];
for(int i=h[u];i;i=e[i].ne){
int b=belong[e[i].v];
if(a!=b)inss(a,b);
}
}
}
int f[N];
int dp(int u){
if(f[u]!=-) return f[u];
f[u]=val[u];
int mx=;
for(int i=hs[u];i;i=es[i].ne){
int v=es[i].v;//printf("dp %d v %d\n",u,v);
mx=max(mx,dp(v));
}
return f[u]+=mx;
}
int main(int argc, const char * argv[]) {
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<=n;i++) w[i]=read();
cnt=;memset(h,,sizeof(h));
for(int i=;i<=m;i++){u=read()+;v=read()+;ins(u,v);}
SCC();
buildGraph(); memset(f,-,sizeof(f));
int ans=;
for(int i=;i<=scc;i++){
if(f[i]==-) dp(i);
ans=max(ans,f[i]);
}
printf("%d\n",ans);
} return ;
}

POJ3160 Father Christmas flymouse[强连通分量 缩点 DP]的更多相关文章

  1. POJ 3126 --Father Christmas flymouse【scc缩点构图 &amp;&amp; SPFA求最长路】

    Father Christmas flymouse Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 3007   Accep ...

  2. BZOJ 1179 Atm(强连通分量缩点+DP)

    题目说可以通过一条边多次,且点权是非负的,所以如果走到图中的一个强连通分量,那么一定可以拿完这个强连通分量上的money. 所以缩点已经很明显了.缩完点之后图就是一个DAG,对于DAG可以用DP来求出 ...

  3. UVA11324 The Largest Clique —— 强连通分量 + 缩点 + DP

    题目链接:https://vjudge.net/problem/UVA-11324 题解: 题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u.v,要么u能到达v, 要么v能到达u(u ...

  4. UVA11324 The Largest Clique[强连通分量 缩点 DP]

    UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直 ...

  5. Father Christmas flymouse

    Father Christmas flymouse Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 3479   Accep ...

  6. POJ1236Network of Schools[强连通分量|缩点]

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16571   Accepted: 65 ...

  7. POJ1236Network of Schools(强连通分量 + 缩点)

    题目链接Network of Schools 参考斌神博客 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后 ...

  8. HD2767Proving Equivalences(有向图强连通分量+缩点)

    题目链接 题意:有n个节点的图,现在给出了m个边,问最小加多少边是的图是强连通的 分析:首先找到强连通分量,然后把每一个强连通分量缩成一个点,然后就得到了一个DAG.接下来,设有a个节点(每个节点对应 ...

  9. UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)

    题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...

随机推荐

  1. Home / Python MySQL Tutorial / Calling MySQL Stored Procedures in Python Calling MySQL Stored Procedures in Python

    f you are not familiar with MySQL stored procedures or want to review it as a refresher, you can fol ...

  2. 转载:《TypeScript 中文入门教程》 7、模块

    版权 文章转载自:https://github.com/zhongsp 建议您直接跳转到上面的网址查看最新版本. 关于术语的一点说明: 请务必注意一点,TypeScript 1.5里术语名已经发生了变 ...

  3. 小记max-with与 max-device-width

    max-with是浏览器的宽度,max-device-width是设备显示器的宽度 浏览器宽度不等于显示器宽度 浏览器可以缩小 1.max-device-width是设备整个显示区域的宽度,例如,真实 ...

  4. [JS]笔记11之正则表达式

    -->什么是正则表达式-->定义正则-->正则的索引-->元字符-->方括号.量词.其他符号-->RegExp 对象的方法-->String 对象方法 1.定 ...

  5. 轻松掌握:JavaScript单例模式

    单例模式 定义:保证一个对象(类)仅有一个实例,并提供一个访问它的全局访问点: 实现原理:利用闭包来保持对一个局部变量的引用,这个变量保存着首次创建的唯一的实例; 主要用于:全局缓存.登录浮窗等只需要 ...

  6. eclipse Swt编程—窗口小部件widget

    1.标签Label // 标签(Label类)组件是SWT中最简单的组件.Label类的构造方法和格式如下: // Label(Composite parent,

  7. Sharepoint学习笔记—习题系列--70-573习题解析 -(Q142-Q143)

    Question 142You have a Feature that contains an image named ImageV1.png.You plan to create a new ver ...

  8. Gui系统之View体系(2)---View的setContent

    1.从SetContentView讲起 1.1Activty的setContentView里面的内容 public void setContentView(@LayoutRes int layoutR ...

  9. Linux挂载卸载光盘&实践

    在Linux下有时候需要挂载光盘,拷贝文件或安装系统,例如拷贝Redhat操作系统镜像文件等.下面介绍一下在Linux系统下挂载.卸载光盘的方法. 在Linux系统中,每一个物理设备都可以看做是一个文 ...

  10. 查看Linux版本信息

    如何查看Linux系统使用的版本信息呢? 下面这篇文章收集.整理了一些常见的查看Linux系统版本的方法.由于手头只有Oracle Linux.Centos Linux.Redhat Linux三个版 ...