kubernetes生态--交付prometheus监控及grafana炫酷dashboard到k8s集群
由于docker容器的特殊性,传统的zabbix无法对k8s集群内的docker状态进行监控,所以需要使用prometheus来进行监控:
什么是Prometheus?
Prometheus是由SoundCloud开发的开源监控报警系统和时序列数据库(TSDB)。Prometheus使用Go语言开发,是Google BorgMon监控系统的开源版本。
2016年由Google发起Linux基金会旗下的原生云基金会(Cloud Native Computing Foundation), 将Prometheus纳入其下第二大开源项目。
Prometheus目前在开源社区相当活跃。
Prometheus和Heapster(Heapster是K8S的一个子项目,用于获取集群的性能数据。)相比功能更完善、更全面。Prometheus性能也足够支撑上万台规模的集群。
Prometheus的特点
- 多维度数据模型。
- 灵活的查询语言。
- 不依赖分布式存储,单个服务器节点是自主的。
- 通过基于HTTP的pull方式采集时序数据。
- 可以通过中间网关进行时序列数据推送。
- 通过服务发现或者静态配置来发现目标服务对象。
- 支持多种多样的图表和界面展示,比如Grafana等。
基本原理
Prometheus的基本原理是通过HTTP协议周期性抓取被监控组件的状态,任意组件只要提供对应的HTTP接口就可以接入监控。不需要任何SDK或者其他的集成过程。这样做非常适合做虚拟化环境监控系统,比如VM、Docker、Kubernetes等。输出被监控组件信息的HTTP接口被叫做exporter 。目前互联网公司常用的组件大部分都有exporter可以直接使用,比如Varnish、Haproxy、Nginx、MySQL、Linux系统信息(包括磁盘、内存、CPU、网络等等)。
服务过程
- Prometheus Daemon负责定时去目标上抓取metrics(指标)数据,每个抓取目标需要暴露一个http服务的接口给它定时抓取。Prometheus支持通过配置文件、文本文件、Zookeeper、Consul、DNS SRV Lookup等方式指定抓取目标。Prometheus采用PULL的方式进行监控,即服务器可以直接通过目标PULL数据或者间接地通过中间网关来Push数据。
- Prometheus在本地存储抓取的所有数据,并通过一定规则进行清理和整理数据,并把得到的结果存储到新的时间序列中。
- Prometheus通过PromQL和其他API可视化地展示收集的数据。Prometheus支持很多方式的图表可视化,例如Grafana、自带的Promdash以及自身提供的模版引擎等等。Prometheus还提供HTTP API的查询方式,自定义所需要的输出。
- PushGateway支持Client主动推送metrics到PushGateway,而Prometheus只是定时去Gateway上抓取数据。
- Alertmanager是独立于Prometheus的一个组件,可以支持Prometheus的查询语句,提供十分灵活的报警方式。
三大套件
- Server 主要负责数据采集和存储,提供PromQL查询语言的支持。
- Alertmanager 警告管理器,用来进行报警。
- Push Gateway 支持临时性Job主动推送指标的中间网关。
prometheus不同于zabbix,没有agent,使用的是针对不同服务的exporter:
prometheus官网:官网地址
正常情况下,监控k8s集群及node,pod,常用的exporter有四个:
- kube-state-metrics -- 收集k8s集群master&etcd等基本状态信息
- node-exporter -- 收集k8s集群node信息
- cadvisor -- 收集k8s集群docker容器内部使用资源信息
- blackbox-exporte -- 收集k8s集群docker容器服务是否存活
接下来逐一创建以上exporter:
老套路,下载docker镜像,准备资源配置清单,应用资源配置清单:
一、kube-state-metrics
- # docker pull quay.io/coreos/kube-state-metrics:v1.5.0
- # docker tag 91599517197a harbor.od.com/public/kube-state-metrics:v1.5.0
- # docker push harbor.od.com/public/kube-state-metrics:v1.5.0
准备资源配置清单:
1、rbac.yaml
- # mkdir /data/k8s-yaml/kube-state-metrics && cd /data/k8s-yaml/kube-state-metrics
- apiVersion: v1
- kind: ServiceAccount
- metadata:
- labels:
- addonmanager.kubernetes.io/mode: Reconcile
- kubernetes.io/cluster-service: "true"
- name: kube-state-metrics
- namespace: kube-system
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRole
- metadata:
- labels:
- addonmanager.kubernetes.io/mode: Reconcile
- kubernetes.io/cluster-service: "true"
- name: kube-state-metrics
- rules:
- - apiGroups:
- - ""
- resources:
- - configmaps
- - secrets
- - nodes
- - pods
- - services
- - resourcequotas
- - replicationcontrollers
- - limitranges
- - persistentvolumeclaims
- - persistentvolumes
- - namespaces
- - endpoints
- verbs:
- - list
- - watch
- - apiGroups:
- - policy
- resources:
- - poddisruptionbudgets
- verbs:
- - list
- - watch
- - apiGroups:
- - extensions
- resources:
- - daemonsets
- - deployments
- - replicasets
- verbs:
- - list
- - watch
- - apiGroups:
- - apps
- resources:
- - statefulsets
- verbs:
- - list
- - watch
- - apiGroups:
- - batch
- resources:
- - cronjobs
- - jobs
- verbs:
- - list
- - watch
- - apiGroups:
- - autoscaling
- resources:
- - horizontalpodautoscalers
- verbs:
- - list
- - watch
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRoleBinding
- metadata:
- labels:
- addonmanager.kubernetes.io/mode: Reconcile
- kubernetes.io/cluster-service: "true"
- name: kube-state-metrics
- roleRef:
- apiGroup: rbac.authorization.k8s.io
- kind: ClusterRole
- name: kube-state-metrics
- subjects:
- - kind: ServiceAccount
- name: kube-state-metrics
- namespace: kube-system
2、dp.yaml
- apiVersion: extensions/v1beta1
- kind: Deployment
- metadata:
- annotations:
- deployment.kubernetes.io/revision: "2"
- labels:
- grafanak8sapp: "true"
- app: kube-state-metrics
- name: kube-state-metrics
- namespace: kube-system
- spec:
- selector:
- matchLabels:
- grafanak8sapp: "true"
- app: kube-state-metrics
- strategy:
- rollingUpdate:
- maxSurge: 25%
- maxUnavailable: 25%
- type: RollingUpdate
- template:
- metadata:
- labels:
- grafanak8sapp: "true"
- app: kube-state-metrics
- spec:
- containers:
- - name: kube-state-metrics
- image: harbor.od.com/public/kube-state-metrics:v1.5.0
- imagePullPolicy: IfNotPresent
- ports:
- - containerPort: 8080
- name: http-metrics
- protocol: TCP
- readinessProbe:
- failureThreshold: 3
- httpGet:
- path: /healthz
- port: 8080
- scheme: HTTP
- initialDelaySeconds: 5
- periodSeconds: 10
- successThreshold: 1
- timeoutSeconds: 5
- serviceAccountName: kube-state-metrics
应用资源配置清单:
- # kubectl apply -f http://k8s-yaml.od.com/kube-state-metrics/rbac.yaml
- # kubectl apply -f http://k8s-yaml.od.com/kube-state-metrics/dp.yaml
测试一下:
- # kubectl get pod -n kube-system -o wide
- # curl http://172.7.22.10:8080/healthz
已经成功运行。
二、node-exporter
由于node-exporter是监控node的,所有需要每个节点启动一个,所以使用ds控制器
- # docker pull prom/node-exporter:v0.15.0
- # docker tag 12d51ffa2b22 harbor.od.com/public/node-exporter:v0.15.0
- # docker push harbor.od.com/public/node-exporter:v0.15.0
准备资源配置清单:
1、ds.yaml
- # mkdir node-exporter && cd node-exporter
- kind: DaemonSet
- apiVersion: extensions/v1beta1
- metadata:
- name: node-exporter
- namespace: kube-system
- labels:
- daemon: "node-exporter"
- grafanak8sapp: "true"
- spec:
- selector:
- matchLabels:
- daemon: "node-exporter"
- grafanak8sapp: "true"
- template:
- metadata:
- name: node-exporter
- labels:
- daemon: "node-exporter"
- grafanak8sapp: "true"
- spec:
- volumes:
- - name: proc
- hostPath:
- path: /proc
- type: ""
- - name: sys
- hostPath:
- path: /sys
- type: ""
- containers:
- - name: node-exporter
- image: harbor.od.com/public/node-exporter:v0.15.0
- imagePullPolicy: IfNotPresent
- args:
- - --path.procfs=/host_proc
- - --path.sysfs=/host_sys
- ports:
- - name: node-exporter
- hostPort: 9100
- containerPort: 9100
- protocol: TCP
- volumeMounts:
- - name: sys
- readOnly: true
- mountPath: /host_sys
- - name: proc
- readOnly: true
- mountPath: /host_proc
- hostNetwork: true
应用资源配置清单:
- # kubectl apply -f http://k8s-yaml.od.com/node-exporter/ds.yaml
- # kubectl get pod -n kube-system -o wide
我们有两个node,每个node节点启动一个:
三、cadvisor
- # docker pull google/cadvisor:v0.28.3
- # docker tag 75f88e3ec333 harbor.od.com/public/cadvisor:0.28.3
- # docker push harbor.od.com/public/cadvisor:0.28.3
准备资源配置清单:
- # mkdir cadvisor && cd cadvisor
1、ds.yaml 标红部分是k8s资源配置清单中一个重要的高级属性,下一篇博客着重介绍
- apiVersion: apps/v1
- kind: DaemonSet
- metadata:
- name: cadvisor
- namespace: kube-system
- labels:
- app: cadvisor
- spec:
- selector:
- matchLabels:
- name: cadvisor
- template:
- metadata:
- labels:
- name: cadvisor
- spec:
- hostNetwork: true
- tolerations:
- - key: node-role.kubernetes.io/master
- effect: NoSchedule
- containers:
- - name: cadvisor
- image: harbor.od.com/public/cadvisor:v0.28.3
- imagePullPolicy: IfNotPresent
- volumeMounts:
- - name: rootfs
- mountPath: /rootfs
- readOnly: true
- - name: var-run
- mountPath: /var/run
- - name: sys
- mountPath: /sys
- readOnly: true
- - name: docker
- mountPath: /var/lib/docker
- readOnly: true
- ports:
- - name: http
- containerPort: 4194
- protocol: TCP
- readinessProbe:
- tcpSocket:
- port: 4194
- initialDelaySeconds: 5
- periodSeconds: 10
- args:
- - --housekeeping_interval=10s
- - --port=4194
- terminationGracePeriodSeconds: 30
- volumes:
- - name: rootfs
- hostPath:
- path: /
- - name: var-run
- hostPath:
- path: /var/run
- - name: sys
- hostPath:
- path: /sys
- - name: docker
- hostPath:
- path: /data/docker
针对挂载资源,做一些调整:
- # mount -o remount,rw /sys/fs/cgroup/
- # ln -s /sys/fs/cgroup/cpu,cpuacct /sys/fs/cgroup/cpuacct,cpu
应用资源配置清单:
- # kubectl apply -f http://k8s-yaml.od.com/cadvisor/ds.yaml
检查:
四、blackbox-exporter
- # docker pull prom/blackbox-exporter:v0.15.1
- # docker tag 81b70b6158be harbor.od.com/public/blackbox-exporter:v0.15.1
- # docker push harbor.od.com/public/blackbox-exporter:v0.15.1
创建资源配置清单:
1、cm.yaml
- apiVersion: v1
- kind: ConfigMap
- metadata:
- labels:
- app: blackbox-exporter
- name: blackbox-exporter
- namespace: kube-system
- data:
- blackbox.yml: |-
- modules:
- http_2xx:
- prober: http
- timeout: 2s
- http:
- valid_http_versions: ["HTTP/1.1", "HTTP/2"]
- valid_status_codes: [200,301,302]
- method: GET
- preferred_ip_protocol: "ip4"
- tcp_connect:
- prober: tcp
- timeout: 2s
2、dp.yaml
- kind: Deployment
- apiVersion: extensions/v1beta1
- metadata:
- name: blackbox-exporter
- namespace: kube-system
- labels:
- app: blackbox-exporter
- annotations:
- deployment.kubernetes.io/revision: 1
- spec:
- replicas: 1
- selector:
- matchLabels:
- app: blackbox-exporter
- template:
- metadata:
- labels:
- app: blackbox-exporter
- spec:
- volumes:
- - name: config
- configMap:
- name: blackbox-exporter
- defaultMode: 420
- containers:
- - name: blackbox-exporter
- image: harbor.od.com/public/blackbox-exporter:v0.15.1
- imagePullPolicy: IfNotPresent
- args:
- - --config.file=/etc/blackbox_exporter/blackbox.yml
- - --log.level=info
- - --web.listen-address=:9115
- ports:
- - name: blackbox-port
- containerPort: 9115
- protocol: TCP
- resources:
- limits:
- cpu: 200m
- memory: 256Mi
- requests:
- cpu: 100m
- memory: 50Mi
- volumeMounts:
- - name: config
- mountPath: /etc/blackbox_exporter
- readinessProbe:
- tcpSocket:
- port: 9115
- initialDelaySeconds: 5
- timeoutSeconds: 5
- periodSeconds: 10
- successThreshold: 1
- failureThreshold: 3
3、svc.yaml
- kind: Service
- apiVersion: v1
- metadata:
- name: blackbox-exporter
- namespace: kube-system
- spec:
- selector:
- app: blackbox-exporter
- ports:
- - name: blackbox-port
- protocol: TCP
- port: 9115
4、ingress.yaml
- apiVersion: extensions/v1beta1
- kind: Ingress
- metadata:
- name: blackbox-exporter
- namespace: kube-system
- spec:
- rules:
- - host: blackbox.od.com
- http:
- paths:
- - path: /
- backend:
- serviceName: blackbox-exporter
- servicePort: blackbox-port
这里用到了一个域名,添加解析:
- # vi /var/named/od.com.zone
- blackbox A 10.4.7.10
应用资源配置清单:
- # kubectl apply -f http://k8s-yaml.od.com/blackbox-exporter/cm.yaml
- # kubectl apply -f http://k8s-yaml.od.com/blackbox-exporter/dp.yaml
- # kubectl apply -f http://k8s-yaml.od.com/blackbox-exporter/svc.yaml
- # kubectl apply -f http://k8s-yaml.od.com/blackbox-exporter/ingress.yaml
访问域名测试:
访问到以下界面,表示blackbox已经运行成功
接下来部署prometheus server:
- # docker pull prom/prometheus:v2.14.0
- # docker tag 7317640d555e harbor.od.com/infra/prometheus:v2.14.0
- # docker push harbor.od.com/infra/prometheus:v2.14.0
准备资源配置清单:
1、rbac.yaml
- apiVersion: v1
- kind: ServiceAccount
- metadata:
- labels:
- addonmanager.kubernetes.io/mode: Reconcile
- kubernetes.io/cluster-service: "true"
- name: prometheus
- namespace: infra
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRole
- metadata:
- labels:
- addonmanager.kubernetes.io/mode: Reconcile
- kubernetes.io/cluster-service: "true"
- name: prometheus
- rules:
- - apiGroups:
- - ""
- resources:
- - nodes
- - nodes/metrics
- - services
- - endpoints
- - pods
- verbs:
- - get
- - list
- - watch
- - apiGroups:
- - ""
- resources:
- - configmaps
- verbs:
- - get
- - nonResourceURLs:
- - /metrics
- verbs:
- - get
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRoleBinding
- metadata:
- labels:
- addonmanager.kubernetes.io/mode: Reconcile
- kubernetes.io/cluster-service: "true"
- name: prometheus
- roleRef:
- apiGroup: rbac.authorization.k8s.io
- kind: ClusterRole
- name: prometheus
- subjects:
- - kind: ServiceAccount
- name: prometheus
- namespace: infra
2、dp.yaml
加上--web.enable-lifecycle启用远程热加载配置文件
调用指令是curl -X POST http://localhost:9090/-/reload
storage.tsdb.min-block-duration=10m #只加载10分钟数据到内
storage.tsdb.retention=72h #保留72小时数据
- apiVersion: extensions/v1beta1
- kind: Deployment
- metadata:
- annotations:
- deployment.kubernetes.io/revision: "5"
- labels:
- name: prometheus
- name: prometheus
- namespace: infra
- spec:
- progressDeadlineSeconds: 600
- replicas: 1
- revisionHistoryLimit: 7
- selector:
- matchLabels:
- app: prometheus
- strategy:
- rollingUpdate:
- maxSurge: 1
- maxUnavailable: 1
- type: RollingUpdate
- template:
- metadata:
- labels:
- app: prometheus
- spec:
- containers:
- - name: prometheus
- image: harbor.od.com/infra/prometheus:v2.14.0
- imagePullPolicy: IfNotPresent
- command:
- - /bin/prometheus
- args:
- - --config.file=/data/etc/prometheus.yml
- - --storage.tsdb.path=/data/prom-db
- - --storage.tsdb.min-block-duration=10m
- - --storage.tsdb.retention=72h
- - --web.enable-lifecycle
- ports:
- - containerPort: 9090
- protocol: TCP
- volumeMounts:
- - mountPath: /data
- name: data
- resources:
- requests:
- cpu: "1000m"
- memory: "1.5Gi"
- limits:
- cpu: "2000m"
- memory: "3Gi"
- imagePullSecrets:
- - name: harbor
- securityContext:
- runAsUser: 0
- serviceAccountName: prometheus
- volumes:
- - name: data
- nfs:
- server: hdss7-200
- path: /data/nfs-volume/prometheus
3、svc.yaml
- apiVersion: v1
- kind: Service
- metadata:
- name: prometheus
- namespace: infra
- spec:
- ports:
- - port: 9090
- protocol: TCP
- targetPort: 9090
- selector:
- app: prometheus
4、ingress.yaml
- apiVersion: extensions/v1beta1
- kind: Ingress
- metadata:
- annotations:
- kubernetes.io/ingress.class: traefik
- name: prometheus
- namespace: infra
- spec:
- rules:
- - host: prometheus.od.com
- http:
- paths:
- - path: /
- backend:
- serviceName: prometheus
- servicePort: 9090
这里用到一个域名,添加解析:
- prometheus A 10.4.7.10
记得重启named服务
创建需要的目录:
- # mkdir -p /data/nfs-volume/prometheus/{etc,prom-db}
修改prometheus配置文件:别问为啥这么写,问就是不懂~
- # vi /data/nfs-volume/prometheus/etc/prometheus.yml
- global:
- scrape_interval: 15s
- evaluation_interval: 15s
- scrape_configs:
- - job_name: 'etcd'
- tls_config:
- ca_file: /data/etc/ca.pem
- cert_file: /data/etc/client.pem
- key_file: /data/etc/client-key.pem
- scheme: https
- static_configs:
- - targets:
- - '10.4.7.12:2379'
- - '10.4.7.21:2379'
- - '10.4.7.22:2379'
- - job_name: 'kubernetes-apiservers'
- kubernetes_sd_configs:
- - role: endpoints
- scheme: https
- tls_config:
- ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
- bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
- relabel_configs:
- - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
- action: keep
- regex: default;kubernetes;https
- - job_name: 'kubernetes-pods'
- kubernetes_sd_configs:
- - role: pod
- relabel_configs:
- - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
- action: keep
- regex: true
- - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
- action: replace
- target_label: __metrics_path__
- regex: (.+)
- - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
- action: replace
- regex: ([^:]+)(?::\d+)?;(\d+)
- replacement: $1:$2
- target_label: __address__
- - action: labelmap
- regex: __meta_kubernetes_pod_label_(.+)
- - source_labels: [__meta_kubernetes_namespace]
- action: replace
- target_label: kubernetes_namespace
- - source_labels: [__meta_kubernetes_pod_name]
- action: replace
- target_label: kubernetes_pod_name
- - job_name: 'kubernetes-kubelet'
- kubernetes_sd_configs:
- - role: node
- relabel_configs:
- - action: labelmap
- regex: __meta_kubernetes_node_label_(.+)
- - source_labels: [__meta_kubernetes_node_name]
- regex: (.+)
- target_label: __address__
- replacement: ${1}:10255
- - job_name: 'kubernetes-cadvisor'
- kubernetes_sd_configs:
- - role: node
- relabel_configs:
- - action: labelmap
- regex: __meta_kubernetes_node_label_(.+)
- - source_labels: [__meta_kubernetes_node_name]
- regex: (.+)
- target_label: __address__
- replacement: ${1}:4194
- - job_name: 'kubernetes-kube-state'
- kubernetes_sd_configs:
- - role: pod
- relabel_configs:
- - action: labelmap
- regex: __meta_kubernetes_pod_label_(.+)
- - source_labels: [__meta_kubernetes_namespace]
- action: replace
- target_label: kubernetes_namespace
- - source_labels: [__meta_kubernetes_pod_name]
- action: replace
- target_label: kubernetes_pod_name
- - source_labels: [__meta_kubernetes_pod_label_grafanak8sapp]
- regex: .*true.*
- action: keep
- - source_labels: ['__meta_kubernetes_pod_label_daemon', '__meta_kubernetes_pod_node_name']
- regex: 'node-exporter;(.*)'
- action: replace
- target_label: nodename
- - job_name: 'blackbox_http_pod_probe'
- metrics_path: /probe
- kubernetes_sd_configs:
- - role: pod
- params:
- module: [http_2xx]
- relabel_configs:
- - source_labels: [__meta_kubernetes_pod_annotation_blackbox_scheme]
- action: keep
- regex: http
- - source_labels: [__address__, __meta_kubernetes_pod_annotation_blackbox_port, __meta_kubernetes_pod_annotation_blackbox_path]
- action: replace
- regex: ([^:]+)(?::\d+)?;(\d+);(.+)
- replacement: $1:$2$3
- target_label: __param_target
- - action: replace
- target_label: __address__
- replacement: blackbox-exporter.kube-system:9115
- - source_labels: [__param_target]
- target_label: instance
- - action: labelmap
- regex: __meta_kubernetes_pod_label_(.+)
- - source_labels: [__meta_kubernetes_namespace]
- action: replace
- target_label: kubernetes_namespace
- - source_labels: [__meta_kubernetes_pod_name]
- action: replace
- target_label: kubernetes_pod_name
- - job_name: 'blackbox_tcp_pod_probe'
- metrics_path: /probe
- kubernetes_sd_configs:
- - role: pod
- params:
- module: [tcp_connect]
- relabel_configs:
- - source_labels: [__meta_kubernetes_pod_annotation_blackbox_scheme]
- action: keep
- regex: tcp
- - source_labels: [__address__, __meta_kubernetes_pod_annotation_blackbox_port]
- action: replace
- regex: ([^:]+)(?::\d+)?;(\d+)
- replacement: $1:$2
- target_label: __param_target
- - action: replace
- target_label: __address__
- replacement: blackbox-exporter.kube-system:9115
- - source_labels: [__param_target]
- target_label: instance
- - action: labelmap
- regex: __meta_kubernetes_pod_label_(.+)
- - source_labels: [__meta_kubernetes_namespace]
- action: replace
- target_label: kubernetes_namespace
- - source_labels: [__meta_kubernetes_pod_name]
- action: replace
- target_label: kubernetes_pod_name
- - job_name: 'traefik'
- kubernetes_sd_configs:
- - role: pod
- relabel_configs:
- - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scheme]
- action: keep
- regex: traefik
- - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
- action: replace
- target_label: __metrics_path__
- regex: (.+)
- - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
- action: replace
- regex: ([^:]+)(?::\d+)?;(\d+)
- replacement: $1:$2
- target_label: __address__
- - action: labelmap
- regex: __meta_kubernetes_pod_label_(.+)
- - source_labels: [__meta_kubernetes_namespace]
- action: replace
- target_label: kubernetes_namespace
- - source_labels: [__meta_kubernetes_pod_name]
- action: replace
- target_label: kubernetes_pod_name
拷贝配置文件中用到的证书:
- # cd /data/nfs-volume/prometheus/etc/
# cp /opt/certs/ca.pem ./- # cp /opt/certs/client.pem ./
- # cp /opt/certs/client-key.pem ./
应用资源配置清单:
- # kubectl apply -f http://k8s-yaml.od.com/prometheus-server/rbac.yaml
- # kubectl apply -f http://k8s-yaml.od.com/prometheus-server/dp.yaml
- # kubectl apply -f http://k8s-yaml.od.com/prometheus-server/svc.yaml
- # kubectl apply -f http://k8s-yaml.od.com/prometheus-server/ingress.yaml
浏览器验证:prometheus.od.com
这里点击status-targets,这里展示的就是我们在prometheus.yml中配置的job-name,这些targets基本可以满足我们收集数据的需求。
点击status-configuration就是我们的配置文件
我们在配置文件中,除了etcd使用的静态配置以外,其他job都是使用的自动发现。
静态配置:
- global:
- scrape_interval: 15s
- evaluation_interval: 15s
- scrape_configs:
- - job_name: 'etcd'
- tls_config:
- ca_file: /data/etc/ca.pem
- cert_file: /data/etc/client.pem
- key_file: /data/etc/client-key.pem
- scheme: https
- static_configs:
- - targets:
- - '10.4.7.12:2379'
- - '10.4.7.21:2379'
- - '10.4.7.22:2379'
自动发现:自动发现资源是pod
- - job_name: 'blackbox_http_pod_probe'
- metrics_path: /probe
- kubernetes_sd_configs:
- - role: pod
- params:
- module: [http_2xx]
- relabel_configs:
这里还有很多数据没有收集到,是因为我们在启动服务的时候,没有添加annotations,下面给需要收集数据的服务添加annotations
1、traefik:
修改traefik的yaml:
从dashboard里找到traefik的yaml,跟labels同级添加annotations
- "annotations": {
- "prometheus_io_scheme": "traefik",
- "prometheus_io_path": "/metrics",
- "prometheus_io_port": "8080"
- }
等待pod重启以后,在去prometheus上去看
2、blackbox:
这个是检测容器内服务存活性的,也就是端口健康状态检查,分为tcp和http
首先准备两个服务,将dubbo-demo-service和dubbo-demo-consumer都调整为使用master镜像,不依赖apollo的(节省资源)
等两个服务起来以后,首先在dubbo-demo-service资源中添加一个TCP的annotation:
- "annotations": {
- "blackbox_port": "20880",
- "blackbox_scheme": "tcp"
- }
这里会自动发现我们服务中,运行tcp port端口为20880的服务,并监控其状态
接下来在dubbo-demo-consumer资源中添加一个HTTP的annotation:
- "annotations": {
- "blackbox_path": "/hello?name=health",
- "blackbox_port": "8080",
- "blackbox_scheme": "http"
- }
去检查blackbox.od.com
接下来添加监控jvm信息的annotation:
- "annotations": {
- "prometheus_io_scrape": "true",
- "prometheus_io_port": "12346",
- "prometheus_io_path": "/"
- }
dubbo-demo-service和dubbo-demo-consumer都添加:
匹配规则,要去prometheus.yml中去看。
接下来部署炫酷的dashboard工具grafana:
下载镜像:
- # docker pull grafana/grafana:5.4.2
- # docker tag 6f18ddf9e552 harbor.od.com/infra/grafana:v5.4.2
- # docker push harbor.od.com/infra/grafana:v5.4.2
准备资源配置清单:
1、rbac.yaml
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRole
- metadata:
- labels:
- addonmanager.kubernetes.io/mode: Reconcile
- kubernetes.io/cluster-service: "true"
- name: grafana
- rules:
- - apiGroups:
- - "*"
- resources:
- - namespaces
- - deployments
- - pods
- verbs:
- - get
- - list
- - watch
- ---
- apiVersion: rbac.authorization.k8s.io/v1
- kind: ClusterRoleBinding
- metadata:
- labels:
- addonmanager.kubernetes.io/mode: Reconcile
- kubernetes.io/cluster-service: "true"
- name: grafana
- roleRef:
- apiGroup: rbac.authorization.k8s.io
- kind: ClusterRole
- name: grafana
- subjects:
- - kind: User
- name: k8s-node
2、dp.yaml
- apiVersion: extensions/v1beta1
- kind: Deployment
- metadata:
- labels:
- app: grafana
- name: grafana
- name: grafana
- namespace: infra
- spec:
- progressDeadlineSeconds: 600
- replicas: 1
- revisionHistoryLimit: 7
- selector:
- matchLabels:
- name: grafana
- strategy:
- rollingUpdate:
- maxSurge: 1
- maxUnavailable: 1
- type: RollingUpdate
- template:
- metadata:
- labels:
- app: grafana
- name: grafana
- spec:
- containers:
- - name: grafana
- image: harbor.od.com/infra/grafana:v5.4.2
- imagePullPolicy: IfNotPresent
- ports:
- - containerPort: 3000
- protocol: TCP
- volumeMounts:
- - mountPath: /var/lib/grafana
- name: data
- imagePullSecrets:
- - name: harbor
- securityContext:
- runAsUser: 0
- volumes:
- - nfs:
- server: hdss7-200
- path: /data/nfs-volume/grafana
- name: data
- # mkdir /data/nfs-volume/grafana
3、svc.yaml
- apiVersion: v1
- kind: Service
- metadata:
- name: grafana
- namespace: infra
- spec:
- ports:
- - port: 3000
- protocol: TCP
- targetPort: 3000
- selector:
- app: grafana
4、ingress.yaml
- apiVersion: extensions/v1beta1
- kind: Ingress
- metadata:
- name: grafana
- namespace: infra
- spec:
- rules:
- - host: grafana.od.com
- http:
- paths:
- - path: /
- backend:
- serviceName: grafana
- servicePort: 3000
域名解析:
- grafana A 10.4.7.10
应用资源配置清单:
- # kubectl apply -f http://k8s-yaml.od.com/grafana/rbac.yaml
- # kubectl apply -f http://k8s-yaml.od.com/grafana/dp.yaml
- # kubectl apply -f http://k8s-yaml.od.com/grafana/svc.yaml
- # kubectl apply -f http://k8s-yaml.od.com/grafana/ingress.yaml
浏览器访问验证:
grafana.od.com
默认用户名密码admin
进入容器安装插件:
- # kubectl exec -it grafana-d6588db94-xr4s6 /bin/bash -n infra
- grafana-cli plugins install grafana-kubernetes-app
- grafana-cli plugins install grafana-clock-panel
- grafana-cli plugins install grafana-piechart-panel
- grafana-cli plugins install briangann-gauge-panel
- grafana-cli plugins install natel-discrete-panel
配置数据源:选择prometheus,把三个证书添加进来
重启grafana
找到我们刚才安装的插件里面的kubernetes,启用,然后新建cluster
添加完需要稍等几分钟,在没有取到数据之前,会报http forbidden,没关系,等一会就好。大概2-5分钟。
配置alert告警插件:
- # docker pull docker.io/prom/alertmanager:v0.14.0
- # docker tag 30594e96cbe8 harbor.od.com/infra/alertmanager:v0.14.0
- # docker push harbor.od.com/infra/alertmanager:v0.14.0
资源配置清单:
1、cm.yaml
- apiVersion: v1
- kind: ConfigMap
- metadata:
- name: alertmanager-config
- namespace: infra
- data:
- config.yml: |-
- global:
- # 在没有报警的情况下声明为已解决的时间
- resolve_timeout: 5m
- # 配置邮件发送信息
- smtp_smarthost: 'smtp.163.com:25'
- smtp_from: 'xxx@163.com'
- smtp_auth_username: 'xxx@163.com'
- smtp_auth_password: 'xxxxxx'
- smtp_require_tls: false
- # 所有报警信息进入后的根路由,用来设置报警的分发策略
- route:
- # 这里的标签列表是接收到报警信息后的重新分组标签,例如,接收到的报警信息里面有许多具有 cluster=A 和 alertname=LatncyHigh 这样的标签的报警信息将会批量被聚合到一个分组里面
- group_by: ['alertname', 'cluster']
- # 当一个新的报警分组被创建后,需要等待至少group_wait时间来初始化通知,这种方式可以确保您能有足够的时间为同一分组来获取多个警报,然后一起触发这个报警信息。
- group_wait: 30s
- # 当第一个报警发送后,等待'group_interval'时间来发送新的一组报警信息。
- group_interval: 5m
- # 如果一个报警信息已经发送成功了,等待'repeat_interval'时间来重新发送他们
- repeat_interval: 5m
- # 默认的receiver:如果一个报警没有被一个route匹配,则发送给默认的接收器
- receiver: default
- receivers:
- - name: 'default'
- email_configs:
- - to: 'xxxx@qq.com'
- send_resolved: true
2、dp.yaml
- apiVersion: extensions/v1beta1
- kind: Deployment
- metadata:
- name: alertmanager
- namespace: infra
- spec:
- replicas: 1
- selector:
- matchLabels:
- app: alertmanager
- template:
- metadata:
- labels:
- app: alertmanager
- spec:
- containers:
- - name: alertmanager
- image: harbor.od.com/infra/alertmanager:v0.14.0
- args:
- - "--config.file=/etc/alertmanager/config.yml"
- - "--storage.path=/alertmanager"
- ports:
- - name: alertmanager
- containerPort: 9093
- volumeMounts:
- - name: alertmanager-cm
- mountPath: /etc/alertmanager
- volumes:
- - name: alertmanager-cm
- configMap:
- name: alertmanager-config
- imagePullSecrets:
- - name: harbor
3、svc.yaml
- apiVersion: v1
- kind: Service
- metadata:
- name: alertmanager
- namespace: infra
- spec:
- selector:
- app: alertmanager
- ports:
- - port: 80
- targetPort: 9093
基础报警规则:
- # vi /data/nfs-volume/prometheus/etc/rules.yml
- groups:
- - name: hostStatsAlert
- rules:
- - alert: hostCpuUsageAlert
- expr: sum(avg without (cpu)(irate(node_cpu{mode!='idle'}[5m]))) by (instance) > 0.85
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "{{ $labels.instance }} CPU usage above 85% (current value: {{ $value }}%)"
- - alert: hostMemUsageAlert
- expr: (node_memory_MemTotal - node_memory_MemAvailable)/node_memory_MemTotal > 0.85
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "{{ $labels.instance }} MEM usage above 85% (current value: {{ $value }}%)"
- - alert: OutOfInodes
- expr: node_filesystem_free{fstype="overlay",mountpoint ="/"} / node_filesystem_size{fstype="overlay",mountpoint ="/"} * 100 < 10
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Out of inodes (instance {{ $labels.instance }})"
- description: "Disk is almost running out of available inodes (< 10% left) (current value: {{ $value }})"
- - alert: OutOfDiskSpace
- expr: node_filesystem_free{fstype="overlay",mountpoint ="/rootfs"} / node_filesystem_size{fstype="overlay",mountpoint ="/rootfs"} * 100 < 10
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Out of disk space (instance {{ $labels.instance }})"
- description: "Disk is almost full (< 10% left) (current value: {{ $value }})"
- - alert: UnusualNetworkThroughputIn
- expr: sum by (instance) (irate(node_network_receive_bytes[2m])) / 1024 / 1024 > 100
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Unusual network throughput in (instance {{ $labels.instance }})"
- description: "Host network interfaces are probably receiving too much data (> 100 MB/s) (current value: {{ $value }})"
- - alert: UnusualNetworkThroughputOut
- expr: sum by (instance) (irate(node_network_transmit_bytes[2m])) / 1024 / 1024 > 100
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Unusual network throughput out (instance {{ $labels.instance }})"
- description: "Host network interfaces are probably sending too much data (> 100 MB/s) (current value: {{ $value }})"
- - alert: UnusualDiskReadRate
- expr: sum by (instance) (irate(node_disk_bytes_read[2m])) / 1024 / 1024 > 50
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Unusual disk read rate (instance {{ $labels.instance }})"
- description: "Disk is probably reading too much data (> 50 MB/s) (current value: {{ $value }})"
- - alert: UnusualDiskWriteRate
- expr: sum by (instance) (irate(node_disk_bytes_written[2m])) / 1024 / 1024 > 50
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Unusual disk write rate (instance {{ $labels.instance }})"
- description: "Disk is probably writing too much data (> 50 MB/s) (current value: {{ $value }})"
- - alert: UnusualDiskReadLatency
- expr: rate(node_disk_read_time_ms[1m]) / rate(node_disk_reads_completed[1m]) > 100
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Unusual disk read latency (instance {{ $labels.instance }})"
- description: "Disk latency is growing (read operations > 100ms) (current value: {{ $value }})"
- - alert: UnusualDiskWriteLatency
- expr: rate(node_disk_write_time_ms[1m]) / rate(node_disk_writes_completedl[1m]) > 100
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Unusual disk write latency (instance {{ $labels.instance }})"
- description: "Disk latency is growing (write operations > 100ms) (current value: {{ $value }})"
- - name: http_status
- rules:
- - alert: ProbeFailed
- expr: probe_success == 0
- for: 1m
- labels:
- severity: error
- annotations:
- summary: "Probe failed (instance {{ $labels.instance }})"
- description: "Probe failed (current value: {{ $value }})"
- - alert: StatusCode
- expr: probe_http_status_code <= 199 OR probe_http_status_code >= 400
- for: 1m
- labels:
- severity: error
- annotations:
- summary: "Status Code (instance {{ $labels.instance }})"
- description: "HTTP status code is not 200-399 (current value: {{ $value }})"
- - alert: SslCertificateWillExpireSoon
- expr: probe_ssl_earliest_cert_expiry - time() < 86400 * 30
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "SSL certificate will expire soon (instance {{ $labels.instance }})"
- description: "SSL certificate expires in 30 days (current value: {{ $value }})"
- - alert: SslCertificateHasExpired
- expr: probe_ssl_earliest_cert_expiry - time() <= 0
- for: 5m
- labels:
- severity: error
- annotations:
- summary: "SSL certificate has expired (instance {{ $labels.instance }})"
- description: "SSL certificate has expired already (current value: {{ $value }})"
- - alert: BlackboxSlowPing
- expr: probe_icmp_duration_seconds > 2
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Blackbox slow ping (instance {{ $labels.instance }})"
- description: "Blackbox ping took more than 2s (current value: {{ $value }})"
- - alert: BlackboxSlowRequests
- expr: probe_http_duration_seconds > 2
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Blackbox slow requests (instance {{ $labels.instance }})"
- description: "Blackbox request took more than 2s (current value: {{ $value }})"
- - alert: PodCpuUsagePercent
- expr: sum(sum(label_replace(irate(container_cpu_usage_seconds_total[1m]),"pod","$1","container_label_io_kubernetes_pod_name", "(.*)"))by(pod) / on(pod) group_right kube_pod_container_resource_limits_cpu_cores *100 )by(container,namespace,node,pod,severity) > 80
- for: 5m
- labels:
- severity: warning
- annotations:
- summary: "Pod cpu usage percent has exceeded 80% (current value: {{ $value }}%)"
在prometheus.yml中添加配置:
- # vi prometheus.yml
- alerting:
- alertmanagers:
- - static_configs:
- - targets: ["alertmanager"]
- rule_files:
- - "/data/etc/rules.yml"
重载配置:
- # curl -X POST http://prometheus.od.com/-/reload
以上这些就是我们的告警规则
测试告警:
把app命名空间里的dubbo-demo-service给停掉:
看下blackbox里的信息:
看下alert:
红色的时候就开会发邮件告警:
已经收到告警了,后续上生产,还会更新如何添加微信、钉钉、短信告警
如果需要自己定制告警规则和告警内容,需要研究一下promql,自己修改配置文件。
kubernetes生态--交付prometheus监控及grafana炫酷dashboard到k8s集群的更多相关文章
- 基于prometheus监控k8s集群
本文建立在你已经会安装prometheus服务的基础之上,如果你还不会安装,请参考:prometheus多维度监控容器 如果你还没有安装库k8s集群,情参考: 从零开始搭建基于calico的kuben ...
- Kubernetes之利用prometheus监控K8S集群
prometheus它是一个主动拉取的数据库,在K8S中应该展示图形的grafana数据实例化要保存下来,使用分布式文件系统加动态PV,但是在本测试环境中使用本地磁盘,安装采集数据的agent使用Da ...
- 容器编排系统K8s之Prometheus监控系统+Grafana部署
前文我们聊到了k8s的apiservice资源结合自定义apiserver扩展原生apiserver功能的相关话题,回顾请参考:https://www.cnblogs.com/qiuhom-1874/ ...
- Kubernetes学习之路(二十三)之资源指标和集群监控
目录 1.资源指标和资源监控 2.Weave Scope监控集群 (1)Weave Scope部署 (2)使用 Scope (3)拓扑结构 (4)实时资源监控 (5)在线操作 (6)强大的搜索功能 2 ...
- Prometheus 监控K8S集群资源监控
Prometheus 监控K8S集群中Pod 目前cAdvisor集成到了kubelet组件内,可以在kubernetes集群中每个启动了kubelet的节点使用cAdvisor提供的metrics接 ...
- 基于k8s集群部署prometheus监控ingress nginx
目录 基于k8s集群部署prometheus监控ingress nginx 1.背景和环境概述 2.修改prometheus配置 3.检查是否生效 4.配置grafana图形 基于k8s集群部署pro ...
- 基于k8s集群部署prometheus监控etcd
目录 基于k8s集群部署prometheus监控etcd 1.背景和环境概述 2.修改prometheus配置 3.检查是否生效 4.配置grafana图形 基于k8s集群部署prometheus监控 ...
- kubernetes实战-交付dubbo服务到k8s集群(六)使用blue ocean流水线构建dubbo-consumer服务
我们这里的dubbo-consumer是dubbo-demo-service的消费者: 我们之前已经在jenkins配置好了流水线,只需要填写参数就行了. 由于dubbo-consumer用的gite ...
- 如何使用helm优雅安装prometheus-operator,并监控k8s集群微服务
前言:随着云原生概念盛行,对于容器.服务.节点以及集群的监控变得越来越重要.Prometheus 作为 Kubernetes 监控的事实标准,有着强大的功能和良好的生态.但是它不支持分布式,不支持数据 ...
随机推荐
- 攻防世界—pwn—int_overflow
题目分析 checksec检查文件保护机制 ida分析程序 经典整数溢出漏洞示例 整数溢出原理整数分为有符号和无符号两种类型,有符号数以最高位作为其符号位,即正整数最高位为1,负数为0, 无符号数取值 ...
- oracle关闭监听log.xml文件生成步骤
1.查看sqlnet.ora文件是否存在 cd $ORACLE_HOME/network/admin ls 如果不存在,copy一个过来 cp samples/sqlnet.ora . 2.修改sql ...
- 1.5V升3V芯片和电路图,DC-DC升压IC
1.5V升3V的升压芯片,3V给LED供电,或者单片机模块供电等. PW5200A工作频率为1.4MHZ.轻载时自动PWM/PFM模式切换,提高效率. PW5200A能够提供2.5V和5V之间的可调输 ...
- HATEOAS的简单认识
HATEOAS: 超媒体作为应用程序状态引擎(HATEOAS)是REST应用程序体系结构的一个组件,它将其与其他网络应用程序体系结构区分开来. 使用HATEOAS,客户端与网络应用程序交互,其应用程序 ...
- floating point
记录浮点数的单精度和双精度(IEEE754) 1.单精度(float) 1.定义:单精度占4字节/32位,其中1号位符号位,其次是8位阶码/指数(阶符+阶数),23位尾数(小数). 2.双精度(d ...
- java.io.IOException: Could not find resource com/xxx/xxxMapper.xml
java.io.IOException: Could not find resource com/xxx/xxxMapper.xml 报错内容: org.apache.ibatis.exception ...
- node集群(cluster)
使用例子 为了让node应用能够在多核服务器中提高性能,node提供cluster API,用于创建多个工作进程,然后由这些工作进程并行处理请求. // master.js const cluster ...
- SICP 解题集 — SICP 解题集 https://sicp.readthedocs.io/en/latest/
SICP 解题集 - SICP 解题集 https://sicp.readthedocs.io/en/latest/
- High Performance Networking in Google Chrome 进程间通讯(IPC) 多进程资源加载
小结: 1. 小文件存储于一个文件中: 在内部,磁盘缓存(disk cache)实现了它自己的一组数据结构, 它们被存储在一个单独的缓存目录里.其中有索引文件(在浏览器启动时加载到内存中),数据文件( ...
- WPF mvvm 验证,耗时两天的解决方案
常用类 类名 介绍 ValidationRule 所有自定义验证规则的基类.提供了让用户定义验证规则的入口. ExceptionValidation 表示一个规则,该规则检查在绑定源属性更新过程中引发 ...