洛谷 P1433 吃奶酪 状压DP
题目描述
分析
比较简单的状压DP
我们设\(f[i][j]\)为当前的状态为\(i\)且当前所在的位置为\(j\)时走过的最小距离
因为老鼠的坐标为\((0,0)\),所以我们要预处理出\(f[1<<(i-1)][i] (1 \leq i \leq n)\)的值
同时在读入的时候顺便处理处任意两个奶酪之间的距离
下面是状态转移方程
for(int i=1;i<(1<<n);i++){
for(int j=1;j<=n;j++){
if((i&(1<<(j-1)))==0) continue;
for(int k=1;k<=n;k++){
if(k==j) continue;
if((i&(1<<(k-1)))==0) continue;
f[i][j]=min(f[i][j],f[i^(1<<(j-1))][k]+jl[k][j]);
}
}
}
思路就是枚举当前状态已经到达的城市,在已经到达的城市中枚举当前所在的城市
同时枚举上一个状态所在的城市,在所有状态中取一个最小值即可
代码
#include<bits/stdc++.h>
using namespace std;
typedef double dd;
const int maxn=18;
dd f[1<<maxn][maxn];
dd jlx[maxn],jly[maxn];
dd jl[maxn][maxn];
int main(){
for(int i=1;i<(1<<18);i++){
for(int j=0;j<18;j++){
f[i][j]=10000000.0;
}
}
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lf%lf",&jlx[i],&jly[i]);
f[1<<(i-1)][i]=(dd)sqrt(jlx[i]*jlx[i]+jly[i]*jly[i]);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
jl[i][j]=(dd)sqrt((jlx[i]-jlx[j])*(jlx[i]-jlx[j])+(jly[i]-jly[j])*(jly[i]-jly[j]));
}
}
for(int i=1;i<(1<<n);i++){
for(int j=1;j<=n;j++){
if((i&(1<<(j-1)))==0) continue;
for(int k=1;k<=n;k++){
if(k==j) continue;
if((i&(1<<(k-1)))==0) continue;
f[i][j]=min(f[i][j],f[i^(1<<(j-1))][k]+jl[k][j]);
}
}
}
dd ans=100000000.0;
for(int i=1;i<=n;i++){
ans=min(ans,f[(1<<n)-1][i]);
}
printf("%.2lf\n",ans);
return 0;
}
洛谷 P1433 吃奶酪 状压DP的更多相关文章
- 洛谷P3959 宝藏(状压dp)
传送门 为什么感觉状压dp都好玄学……FlashHu大佬太强啦…… 设$f_{i,j}$表示当前选的点集为$i$,下一次要加入的点集为$j$时,新加入的点和原有的点之间的最小边权.具体的转移可以枚举$ ...
- 洛谷 P3112 后卫马克 —— 状压DP
题目:https://www.luogu.org/problemnew/show/P3112 状压DP...转移不错. 代码如下: #include<iostream> #include& ...
- 【洛谷4941】War2 状压Dp
简单的状压DP,和NOIP2017 Day2 找宝藏 代码几乎一样.(比那个稍微简单一点) f[i][j] ,i代表点的状态,j是当前选择的点,枚举上一个选到的点k 然后从f[i-(1<< ...
- 洛谷 3959 宝藏——枚举+状压dp
题目:https://www.luogu.org/problemnew/show/P3959 原来写了个不枚举起点的状压dp. #include<iostream> #include< ...
- 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$
正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...
- 洛谷P2473奖励关——状压DP
题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那 ...
- 2018.11.02 洛谷P2831 愤怒的小鸟(状压dp)
传送门 状压一眼题. 直接f[i]f[i]f[i]表示未选择状态为iii时的最小次数. 然后考虑现在怎么转移. 显然可以直接枚举消掉某一个点或者某两个点,复杂度O(n22n)O(n^22^n)O(n2 ...
- 洛谷P1433 吃奶酪 题解 状态压缩DP
题目链接:https://www.luogu.com.cn/problem/P1433 题目大意 房间里放着 \(n\) 块奶酪.一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在 \((0, ...
- 洛谷 P1433 吃奶酪【DFS】+剪枝
题目链接:https://www.luogu.org/problemnew/show/P1433 题目描述 房间里放着n块奶酪.一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在(0,0)点处 ...
随机推荐
- 【Jquery】根据元素个数给予宽度
方法一: $(document).ready(function(){ $(".xn_mc_solu_2_ul").css("width", $(".x ...
- effictive c++
c++条款 num 1:尽量以const enum inline替换#define 1)对于单纯常量,最好以const对象或enums替换#defines 2)对于形似函数的宏,最好改用inline函 ...
- STM32串口打印的那些知识
常规打印方法 在STM32的应用中,我们常常对printf进行重定向的方式来把打印信息printf到我们的串口助手.在MDK环境中,我们常常使用MicroLIB+fputc的方式实现串口打印功能,即: ...
- Mybatis详解(二) sqlsession的创建过程
我们处于的位置 我们要清楚现在的情况. 现在我们已经调用了SqlSessionFactoryBuilder的build方法生成了SqlSessionFactory 对象. 但是如标题所说,要想生成sq ...
- 宝塔面板如何有效的清除SSL证书以及缓存
一:关闭SSL 我们先关闭SSL证书,这个大家都会的吧.如图: 二:证书夹 网站配置的证书夹,我们删除掉,如图: 三:寻找SSL证书路径 网站配置里有一路径我们看下:如下 ssl_certificat ...
- AutoIt实现文件上传
AutoIt目前最新是v3版本,这是一个使用类似BASIC脚本语言的免费软件,它设计用于Windows GUI(图形用户界面)中进行自动化操作.它利用模拟键盘按键,鼠标移动和窗口/控件的组合来实现自动 ...
- mysql字符串类型(char,varchar)
原文链接:https://blog.csdn.net/puqutogether/article/details/45648879 MySQL中的字符串有两个常用的类型:char和varchar,二者各 ...
- 如何安装vim自动补全插件YouCompleteMe(YCM)
Vim是全平台上一个高度可拓展的编辑器.它本身只是一个简陋的编辑器,但是因为有各种插件而变得强大.使用Vim编写代码就不免遇到代码补全的问题.常用的代码补全插件有两个:日本人shougo写的neoco ...
- 【JMeter_06】JMeter逻辑控制器__If控制器<If Controller>
If控制器<If Controller> 业务逻辑: 根据表达式的结果来决定是否执行控制器下的脚本内容,与编程语言中的if判断逻辑大致相同,表达式结果为布尔值 true或false; 当表 ...
- ASP.NET处理管道初谈
客户端往发送的请求到达服务端到服务端响应回客户端的这段时间内,实际上服务器内并不只是简单地对请求进行处理,然后把处理结果响应回去,而是经过一系列多达19个事件之后才能产生最后地处理结果. 因此:其处理 ...