数据可视化实例(十五):有序条形图(matplotlib,pandas)
偏差 (Deviation)
有序条形图 (Ordered Bar Chart)
有序条形图有效地传达了项目的排名顺序。 但是,在图表上方添加度量标准的值,用户可以从图表本身获取精确信息。
https://datawhalechina.github.io/pms50/#/chapter15/chapter15
导入所需要的库
import numpy as np # 导入numpy库
import pandas as pd # 导入pandas库
import matplotlib as mpl # 导入matplotlib库
import matplotlib.pyplot as plt
import seaborn as sns # 导入seaborn库
设定图像各种属性
large = 22; med = 16; small = 12 params = {'axes.titlesize': large, # 设置子图上的标题字体
'legend.fontsize': med, # 设置图例的字体
'figure.figsize': (16, 10), # 设置图像的画布
'axes.labelsize': med, # 设置标签的字体
'xtick.labelsize': med, # 设置x轴上的标尺的字体
'ytick.labelsize': med, # 设置整个画布的标题字体
'figure.titlesize': large}
plt.rcParams.update(params) # 更新默认属性
plt.style.use('seaborn-whitegrid') # 设定整体风格
sns.set_style("white") # 设定整体背景风格
程序代码
# step1:导入数据
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x:x.mean())
df.sort_values('cty', inplace = True)
df.reset_index(inplace = True) # step2:绘制有序条形图
# 创建画布对象以及子图对象
fig,ax = plt.subplots(figsize = (16, 10), # 画布尺寸
facecolor = 'white', # 画布颜色
dpi = 80) # 分辨率
# 绘制柱状图
ax.vlines(x = df.index, # 横坐标
ymin = 0, # 柱状图在y轴的起点
ymax = df.cty, # 柱状图在y轴的终点
color = 'firebrick', # 柱状图的颜色
alpha = 0.7, # 柱状图的透明度
linewidth = 20) # 柱状图的线宽 # step3:添加文本
# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,
for i, cty, in enumerate(df.cty):
ax.text(i, # 文本的横坐标位置
cty+0.5, # 文本的纵坐标位置
round(cty, 1), # 对文本中数据保留一位小数
horizontalalignment = 'center') # 相对于xy轴,水平对齐 # step4:装饰
ax.set_title('Bar Chart for Highway Mileage', # 子图标题名称
fontdict = {'size': 22}) # 标题字体尺寸
ax.set(ylabel = 'Miles Per Gallon', # 纵坐标的标题名称
ylim = (0,30)) # 纵坐标的取值范围
# 横坐标的刻度标尺
plt.xticks(df.index, # 横坐标的刻度位置
df.manufacturer.str.upper(), # 刻度标尺的内容(先转化为字符串,再转换为大写)
rotation = 60, # 旋转角度
horizontalalignment = 'right', # 相对于刻度标尺右移
fontsize = 12) # 字体尺寸 # step5:添加补丁
# 添加绿色的补丁
p1 = patches.Rectangle((0.57, -0.005), # 矩形左下角坐标
width = 0.33, # 矩形的宽度
height = 0.13, # 矩形的高度
alpha = 0.1, # 矩阵的透明度
facecolor = 'green', # 是否填充矩阵(设置为绿色)
transform = fig.transFigure) # 保持矩形显示在图像最上方
# 添加红色的补丁
p2 = patches.Rectangle((0.124, -0.005), # 矩形左下角坐标
width = 0.446, # 矩形的宽度
height = 0.13, # 矩形的高度
alpha = 0.1, # 矩阵的透明度
facecolor = 'red', # 是否填充矩阵(设置为红色)
transform = fig.transFigure) # 保持矩形显示在图像最上方
# 将补丁添加至画布
fig.add_artist(p1) # 将p1添加至画布上
fig.add_artist(p2) # 将p2添加至画布上
plt.show() # 显示图像
matplotlib.pyplot.vlines
matplotlib.pyplot.vlines(x, ymin, ymax, colors='k', linestyles='solid', label='', *, data=None, **kwargs)[源代码]
绘制垂直线。
在每个位置绘制垂直线 x 从 ymin 到 ymax .
参数: |
|
---|---|
返回: |
|
其他参数: |
|
数据可视化实例(十五):有序条形图(matplotlib,pandas)的更多相关文章
- 数据可视化实例(五): 气泡图(matplotlib,pandas)
https://datawhalechina.github.io/pms50/#/chapter2/chapter2 关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也 ...
- 【Matplotlib】数据可视化实例分析
数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...
- 数据可视化实例(十六):有序条形图(matplotlib,pandas)
排序 (Ranking) 棒棒糖图 (Lollipop Chart) 棒棒糖图表以一种视觉上令人愉悦的方式提供与有序条形图类似的目的. https://datawhalechina.github.io ...
- 数据可视化实例(十二): 发散型条形图 (matplotlib,pandas)
https://datawhalechina.github.io/pms50/#/chapter10/chapter10 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条 ...
- 数据可视化实例(十三): 发散型文本 (matplotlib,pandas)
偏差 (Deviation) https://datawhalechina.github.io/pms50/#/chapter11/chapter11 发散型文本 (Diverging Texts) ...
- 数据可视化基础专题(四):Pandas基础(三) mysql导入与导出
转载(有添加.修改)作者:但盼风雨来_jc链接:https://www.jianshu.com/p/238a13995b2b來源:简书著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处 ...
- 数据可视化基础专题(八):Pandas基础(七) 数据清洗与预处理相关
1.数据概览 第一步当然是把缺失的数据找出来, Pandas 找缺失数据可以使用 info() 这个方法(这里选用的数据源还是前面一篇文章所使用的 Excel ,小编这里简单的随机删除掉几个数据) i ...
- 数据可视化实例(十四):带标记的发散型棒棒糖图 (matplotlib,pandas)
偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适 ...
- 数据可视化实例(十四):面积图 (matplotlib,pandas)
偏差 (Deviation) 面积图 (Area Chart) 通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间. 高点持续时间越长,线下面积越大. https:/ ...
随机推荐
- VS Code项目中共享自定义的代码片段方案
VS Code项目中共享自定义的代码片段方案 一.问题背景 项目中注释风格不统一,如何统一注释风格 一些第三方组件库名称太长,每次使用都需要找文档,然后复制粘贴 部分组件库有自己的Snippets插件 ...
- (五)pom文件详解
<?xml version="1.0" encoding="UTF-8"?> <!--是所有pom.xml的根元素,并且在里面定义了命名空间和 ...
- Mysql 视图用途、使用场景、性能问题及使用注意事项
原文:https://blog.csdn.net/chuangxin/article/details/84574557 <SQLite权威指南>中作者是这么定义视图的:视图即是虚拟表,也称 ...
- 微信小程序之后端处理
首先,来看一下后端的关系图: 这边主要介绍PHP的一些基础语法等等,关于将php代码部署到SAE新浪云,大家可以参考这个链接:https://www.cnblogs.com/dhx96/p/65617 ...
- opencv c++访问某一区域
int main(){ cv::Mat m1(,, CV_8UC1); for(int i=;i<m1.rows;++i) for(int j=;j<m1.cols;++j) m1.at& ...
- Netty的Marshalling编解码器
1.编码与解码 通常我们习惯将编码(Encode)称为序列化(serialization),它将对象序列化为字节数组,用于网络传输.数据持久化或者其它用途.反之,解码(Decode)称为反序列化 ...
- appium安装的permission deny处理方法-20200204
npm -v 报错:Error: EPERM: operation not permitted, mkdir 'C:\soft\nodejs' 起因:原本安装node在C盘soft文件夹下,按node ...
- .net core 使用Tu Share获取股票交易数据
一.什么是Tu Share Tushare是一个免费.开源的python财经数据接口包.主要实现对股票等金融数据从数据采集.清洗加工 到 数据存储的过程,用户可以免费(部分数据的下载有积分限制)的通 ...
- 入门大数据---Spark_Streaming基本操作
一.案例引入 这里先引入一个基本的案例来演示流的创建:获取指定端口上的数据并进行词频统计.项目依赖和代码实现如下: <dependency> <groupId>org.apac ...
- Springboot--元注解及自定义注解(表单验证)
本文简单说明一下元注解,然后对元注解中的@Retention做深入的讨论,在文章最后使用元注解写一个自定义注解来结尾. 一.结论: @Target:注解的作用目标 @Target(ElementTyp ...