「LOJ #6500」「雅礼集训 2018 Day2」操作
description
solution
根据常有套路,容易想到将区间差分转化为异或数组上的单点修改,即令\(b_i=a_i \ xor\ a_{i-1}\),
那么将\([l,l+k-1]\)取反,就相当于将\(b[l]\)与\(b[l+k]\)取反,若\(b[l]\)与\(b[l+k]\)都是1,等于是二者消掉了
于是发现一次操作只会对\(mod k\)余数相同的位置造成影响,并且每次操作只能消去两个1,
故区间\([l,r]\)的\(b\)数组能全部变成0当且仅当这段区间内的所有位置按\(mod k\)的余数分组后,每组中都有偶数个1
处理这样的情况有一个常见套路,那就是给\(mod k\)的每个余数分配一个随机数哈希值,那么一段区间中若\(mod k=r\)的位置中有偶数个1,那么异或起来就会变成0
故区间\([l,r]\)的\(b\)数组能全部变成0当且仅当这段区间内的异或和为0
考虑如何求操作次数,容易想到将最优方案是对于每个剩余系,将相邻的2个1配对
于是对于一个\(mod k=r\)的剩余系,设剩余系内所有位置从小到大分别为\(a_1,a_2,⋯,a_{2k−1},a_{2k}\),那么答案就是\(\frac{(a_2−a_1)+(a_4−a_3)+⋯+(a_{2k}−a_{2k−1})}{k}\)。
我们可以预处理这个式子的前缀和,因为从左至右依次处理时,每一个剩余系内从右至左的第奇数个位置有正的贡献,第偶数个有负的贡献,于是新加入一个\(i\)就会导致之前的贡献全部取反再加上\(i\)的贡献
于是再特殊处理一下边界就行了
code
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
const int N=2e6+10;
int n,k,m,a[N],dis[N],d[N],L[N],R[N];
ull hsh[N],sum[N];
char s[N];
int main(){
scanf("%d%d%d",&n,&k,&m);
scanf("%s",s+1);
for(int i=0;i<k;++i) hsh[i]=rand()*rand();
for(int i=1;i<=n;++i){
a[i]=s[i]-'0';
sum[i]=sum[i-1];dis[i]=dis[i-1];
if(a[i]^a[i-1]){
sum[i]^=hsh[i%k];
dis[i]+=-(d[i%k]<<1)+i;
d[i%k]=i-d[i%k];
}
L[i]=d[i%k];
R[i]=d[(i+1)%k];
}
for(int i=1,l,r;i<=m;++i){
scanf("%d%d",&l,&r);
ull hsht=sum[l]^sum[r]^(a[l]*hsh[l%k])^(a[r]*hsh[(r+1)%k]);
if(hsht!=0) puts("-1");
else{
int ret=dis[r]-dis[l];
if(a[l]==1) ret-=l-(L[l]<<1);
if(a[r]==1) ret+=r+1-(R[r]<<1);
printf("%d\n",ret/k);
}
}
return 0;
}
「LOJ #6500」「雅礼集训 2018 Day2」操作的更多相关文章
- 【卡常 bitset 分块】loj#6499. 「雅礼集训 2018 Day2」颜色
好不容易算着块大小,裸的分块才能过随机极限数据:然而这题在线的数据都竟然是构造的…… 题目描述 有 $n$ 个数字,第 $i$ 个数字为 $a_i$. 有 $m$ 次询问,每次给出 $k_i$ 个区间 ...
- 「雅礼集训 2018 Day2」农民
传送门 Description 「搞 OI 不如种田.」 小 D 在家种了一棵二叉树,第 ii 个结点的权值为 \(a_i\). 小 D 为自己种的树买了肥料,每天给树施肥. 可是几天后,小 D 却 ...
- LOJ6500. 「雅礼集训 2018 Day2」操作(哈希+差分)
题目链接 https://loj.ac/problem/6500 题解 区间取反 \(01\) 串的经典套路是差分.我们令 \(b_i = a_i\ {\rm xor}\ a_{i - 1}\)(\( ...
- #6499. 「雅礼集训 2018 Day2」颜色 [分块,倍增,bitset]
bitset压位,因为是颜色数,直接倍增,重合部分不管,没了. // powered by c++11 // by Isaunoya #include <bits/stdc++.h> #d ...
- 【LOJ6498】「雅礼集训 2018 Day2」农民
题面 solution 直接暴力模拟,原数据可获得满分的成绩. 对于每个点,其父亲对其都有一个限制.故我们只需要判断当前点到根的路径上的限制是否都能满足即可. 考虑用树剖+线段树维护这个限制.考虑到翻 ...
- Loj #6503. 「雅礼集训 2018 Day4」Magic
Loj #6503. 「雅礼集训 2018 Day4」Magic 题目描述 前进!前进!不择手段地前进!--托马斯 · 维德 魔法纪元元年. 1453 年 5 月 3 日 16 时,高维碎片接触地球. ...
- 「雅礼集训 2017 Day2」解题报告
「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...
- #6034. 「雅礼集训 2017 Day2」线段游戏 李超树
#6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统 ...
- 【loj6034】「雅礼集训 2017 Day2」线段游戏
#6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:Special Judge 上传者: 匿名 题目描述 ...
随机推荐
- vue项目 封装api
设计思路 为了加强项目的可维护性,建议将请求接口api进行统一封装, 一个常规项目的基础地址一般为唯一,所以考虑将基础地址设定一个变量 let baseUrl: "xxxxxx" ...
- svg 进度条
先看理想效果 先上代码,在进行解释 <div id="app"> <svg width="230" height="230" ...
- leetcode学习总结
转自https://leetcode-cn.com/ 1.两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以 ...
- oracle 日常删除多余数据
查询及删除重复记录的SQL语句 1.查找表中多余的重复记录,重复记录是根据单个字段(Id)来判断 select * from 表 where Id in (select Id from 表 g ...
- git 常用命令大全2
查看.添加.提交.删除.找回,重置修改文件 git help <command> # 显示command的help git show # 显示某次提交的内容 git show $id gi ...
- NB-IoT的同步信号解析
NB-IoT的小区搜索和LTE的小区搜索是类似的,每个UE都是通过对同步信号的检测,来实现与小区时间和频率上的同步,以此来获取小区的ID.NB-IoT的同步信号包括NPSS和NSSS. NPSS用于完 ...
- 04 . Go+Vue开发一个线上外卖应用(用户名密码和图形验证码)
图形化验证码生成和验证 功能介绍 在使用用户名和密码登录功能时,需要填写验证码,验证码是以图形化的方式进行获取和展示的. 验证码使用原理 验证码的使用流程和原理为:在服务器端负责生成图形化验证码,并以 ...
- frida打印与参数构造
title: frida打印与参数构造 categories: 逆向与协议分析 toc: true mathjax: true tags: frida HOOK 逆向 widgets: type: t ...
- 如何优雅阻止view UI 的 Switch 切换?
一.官方文档提供的方法 个人觉得官方提供的方法有时候不能够满足现实需求,第二点是view UI版本必须是4.0.0版本及以上才能使用这个开关组件. 二.自定义方法解决 ①将开关禁用掉 加一个 dis ...
- ci之 core下CodeIgniter源码分析(1)
ci 执行流程 index.php 文件 加载codeigniter文件 codeigniter部分里面加载的: 加载配置文件constants 加载全局公共函数core/Common.php 文件 ...