Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+;
typedef long long ll;
using namespace std;
int pre[maxn],n,m,first; struct node
{
int x,y,val;
int u;
int e;
int d;
} p[maxn];
int find(int x)
{
if(pre[x]==x)
{
return x;
}
else
{
return pre[x]=find(pre[x]);
}
}
int prime()
{
int i,j,k,sum,num;
sum=;num=;
for(i=;i<=n;i++)
pre[i]=i;
for(i=;i<=m;i++) {
if(p[i].d) continue;
int fx=find(p[i].x);
int fy=find(p[i].y);
if(fx!=fy) {
num++;
pre[fx]=fy;
sum+=p[i].val;
if(first)
p[i].u=;
}
if(num==n-) break;
}
return sum;
}
bool cmp(node x,node y)
{
if(x.val<y.val)
return true;
else
return false;
}
int main()
{
int k,u,v,w,sum1,sum2;
int T;
scanf("%d",&T);
while(T--)
{
sum1=sum2=;
memset(p,,sizeof(p));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].val);
}
for(int i=;i<=m;i++) {
for(int j=i+;j<=m;j++)
{
if(p[i].val==p[j].val) p[i].e=;
}
}
sort(p+,p++m,cmp);
first=;
sum1=prime();
first=;
bool flag=false;
for(int i=;i<=m;i++)
{
if(p[i].u && p[i].e)
{ p[i].d=;
sum2=prime();
if(sum1==sum2)
{
flag=true;
printf("Not Unique!\n");
break;
}
}
}
if(!flag)
printf("%d\n",sum1);
}
}

The Unique MST(最小生成树的唯一性判断)的更多相关文章

  1. K - The Unique MST (最小生成树的唯一性)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  2. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  3. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

  4. POJ 1679 The Unique MST (最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  5. POJ1679 The Unique MST(Kruskal)(最小生成树的唯一性)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27141   Accepted: 9712 D ...

  6. The Unique MST (判断是否存在多个最小生成树)

    The Unique MST                                                                        Time Limit: 10 ...

  7. POJ 1679 The Unique MST 【判断最小生成树是否唯一】

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique.  Defini ...

  8. POJ-1679 The Unique MST(次小生成树、判断最小生成树是否唯一)

    http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its minimum s ...

  9. poj1679 The Unique MST(最小生成树唯一性)

    最小生成树的唯一性,部分参考了oi-wiki 如果一条不在最小生成树边集内的边,它可以替换一条在最小生成树边集内,且权值相等的边,那么最小生成树不是唯一的 同过kruskal来判断 考虑权值相等的边, ...

随机推荐

  1. __getattribute__和item系列

    # class Foo: # def __init__(self,x): # self.x=x # # def __getattr__(self, item): # print('执行的是我') # ...

  2. python8.1多线程

    import threadingimport time def run1 (name,sex): print(name,sex,"执行线程1") time.sleep(3)def ...

  3. 小伙子自从学会用Python爬取岛国“动作”电影,身体一天不如一天

    在互联网的世界里,正确的使用VPN看看外面的世界,多了解了解世界的发展.肉身翻墙后,感受一下外面的肮脏世界.墙内的朋友叫苦不迭,由于某些原因,VPN能用的越来越少.上周我的好朋友狗子和我哭诉说自己常用 ...

  4. 精讲RestTemplate第3篇-GET请求使用方法详解

    本文是精讲RestTemplate第3篇,前篇的blog访问地址如下: 精讲RestTemplate第1篇-在Spring或非Spring环境下如何使用 精讲RestTemplate第2篇-多种底层H ...

  5. 这几个冷门却实用的 Python 库,我爱了!

  6. SpringBoot进阶教程(六十三)Jasypt配置文件加密

    数据库密码直接明文写在配置中,对安全来说,是一个很大的挑战.一旦密码泄漏,将会带来很大的安全隐患.尤其在一些企业对安全性要求很高,因此我们就考虑如何对密码进行加密.本文着重介绍Jasypt对Sprin ...

  7. C++实现哈夫曼编码/译码器(数据结构)

    设计一个哈夫曼编码.译码系统.对一个ASCII编码的文本文件中的字符进行哈夫曼编码,生成编码文件:反过来,可将编码文件译码还原为一个文本文件.(1) 从文件中读入任意一篇英文短文(文件为ASCII编码 ...

  8. C#设计模式之5-单例模式

    单例模式(Singleton Pattern) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/397 访问. 单例模式属 ...

  9. C#算法设计查找篇之04-斐波那契查找

    斐波那契查找(Fibonacci Search) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/704 访问. 斐波那契 ...

  10. CSS动画实例:旋转的圆角正方形

    在页面中放置一个类名为container的层作为效果呈现容器,在该层中再定义十个名为shape的层层嵌套的子层,HTML代码描述如下: <div class="container&qu ...