Tensorflow-线性回归与手写数字分类
线性回归
步骤
- 构造线性回归数据
- 定义输入层
- 设计神经网络中间层
- 定义神经网络输出层
- 计算二次代价函数,构建梯度下降
- 进行训练,获取预测值
- 画图展示
代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
tf.compat.v1.disable_eager_execution() #3-1非线性回归
#使用numpy生成200个随机点,200行1列
x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise=np.random.normal(0,0.02,x_data.shape)
#square为平方
y_data=np.square(x_data)+noise
print(x_data)
print(y_data)
print(y_data.shape) #定义两个placeholder
#输入层:一个神经元
x=tf.compat.v1.placeholder(tf.float32,[None,1])
y=tf.compat.v1.placeholder(tf.float32,[None,1]) #定义神经网络中间层
#中间层:10个神经元
Weights_L1=tf.Variable(tf.compat.v1.random_normal([1,10]))
biases_L1=tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L1=tf.matmul(x,Weights_L1)+biases_L1
#L1中间层的输出,tanh为激活函数
L1=tf.nn.tanh(Wx_plus_b_L1) #定义神经网络输出层
#输出层:一个神经元
Weights_L2=tf.Variable(tf.compat.v1.random_normal([10,1]))
biases_L2=tf.Variable(tf.zeros([1,1]))
#输出层的输入就是中间层的输出,故为L1
Wx_plus_b_L2=tf.matmul(L1,Weights_L2)+biases_L2
#预测结果
prediction=tf.nn.tanh(Wx_plus_b_L2) #二次代价函数
#真实值减去预测值的平方的平均值
loss=tf.reduce_mean(tf.square(y-prediction))
#梯度下降:学习率,最下化为loss
train_step=tf.compat.v1.train.GradientDescentOptimizer(0.1).minimize(loss) #定义会话
with tf.compat.v1.Session() as sess:
# 变量初始化
sess.run(tf.compat.v1.global_variables_initializer())
# 开始训练
for _ in range(2000):
#使用placeholder进行传值,传入样本值
sess.run(train_step,feed_dict={x:x_data,y:y_data}) #训练好后,获得预测值,同时传入样本参数
prediction_value=sess.run(prediction,feed_dict={x:x_data}) #画图
plt.figure()
# 用散点图,来画出样本点
plt.scatter(x_data,y_data)
# 预测图,红色实现,线款为5
plt.plot(x_data,prediction_value,'r-',lw=5)
plt.show()
展示
手写数字分类
MNIST数据集
MNIST数据集的官网:Yann LeCun's website下载下来的数据集被分成两部分:60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test)
数据集详情
每一张图片包含28*28个像素,我们把这一个数组展开成一个向量,长度是28*28=784。因此在
MNIST训练数据集中mnist.train.images 是一个形状为 [60000, 784] 的张量,第一个维度数字用
来索引图片,第二个维度数字用来索引每张图片中的像素点。图片里的某个像素的强度值介于0-1
之间。
神经网络搭建
Softmax函数
代码
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tf.compat.v1.disable_eager_execution()
import numpy as np #载入数据集
mnist=input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次大小
batch_size=100
#计算一共有多少个批次
n_bath=mnist.train.num_examples // batch_size
print(n_bath)
#定义两个placeholder
x=tf.compat.v1.placeholder(tf.float32,[None,784])
y=tf.compat.v1.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))
prediction=tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
loss=tf.reduce_mean(tf.square(y-prediction))
#梯度下降
train_step=tf.compat.v1.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init=tf.compat.v1.global_variables_initializer() #结果存放在一个布尔型列表中
#返回的是一系列的True或False argmax返回一维张量中最大的值所在的位置,对比两个最大位置是否一致
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) #求准确率
#cast:将布尔类型转换为float,将True为1.0,False为0,然后求平均值
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.compat.v1.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_bath):
#获得一批次的数据,batch_xs为图片,batch_ys为图片标签
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
#进行训练
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
#训练完一遍后,测试下准确率的变化 acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter "+str(epoch)+",Testing Accuracy "+str(acc))
输出:
优化代码
优化方面:
①批次个数减小到20
②权值不再为0,改为随机数,设置参数要尽可能小
③增加一个隐藏层,节点数是sqrt(n*l),其中n是输入节点数,l是输出节点数,故为89
④代价函数更换为:交叉熵
⑤梯度下降函数更换为-->动量随机梯度下降,如果上次的准确率比这次准确率还要大,则将0.2乘以0.5
代码:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tf.compat.v1.disable_eager_execution()
import numpy as np #载入数据集
mnist=input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次大小
batch_size=20
#计算一共有多少个批次
n_bath=mnist.train.num_examples // batch_size
print(n_bath)
#定义两个placeholder
x=tf.compat.v1.placeholder(tf.float32,[None,784])
y=tf.compat.v1.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络
#1.初始化非常重要,参数要尽可能小
W=tf.Variable(tf.compat.v1.random_normal([784,89])/np.sqrt(784))
b=tf.Variable(tf.zeros([89]))
prediction=tf.nn.relu(tf.matmul(x,W)+b) #第二层
#2.我增加了一个神经网络层,节点数是sqrt(n*l),其中n是输入节点数,l是输出节点数
W2=tf.Variable(tf.compat.v1.random_normal([89,10])/np.sqrt(89))
b2=tf.Variable(tf.zeros([10]))
#将其转换为概率值
prediction2=tf.nn.softmax(tf.matmul(prediction,W2)+b2) #二次代价函数
# loss=tf.reduce_mean(tf.square(y-prediction2))
#交叉熵
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction2))
#动量随机梯度下降
#3.如果上次的准确率比这次准确率还要大,则将0.2乘以0.5
train_step=tf.compat.v1.train.MomentumOptimizer(0.2,0.5).minimize(loss) #初始化变量
init=tf.compat.v1.global_variables_initializer() #结果存放在一个布尔型列表中
#返回的是一系列的True或False argmax返回一维张量中最大的值所在的位置,对比两个最大位置是否一致
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction2,1)) #求准确率
#cast:将布尔类型转换为float,将True为1.0,False为0,然后求平均值
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.compat.v1.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_bath):
#获得一批次的数据,batch_xs为图片,batch_ys为图片标签
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
#进行训练
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
#训练完一遍后,测试下准确率的变化 acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter "+str(epoch)+",Testing Accuracy "+str(acc))
输出:
Tensorflow-线性回归与手写数字分类的更多相关文章
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- MNIST手写数字分类simple版(03-2)
simple版本nn模型 训练手写数字处理 MNIST_data数据 百度网盘链接:https://pan.baidu.com/s/19lhmrts-vz0-w5wv2A97gg 提取码:cgnx ...
- 基于TensorFlow的MNIST手写数字识别-初级
一:MNIST数据集 下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...
- Tensorflow之MNIST手写数字识别:分类问题(1)
一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点: 1.将离散特征的取值扩展 ...
- Tensorflow实现MNIST手写数字识别
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...
- 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...
- Tensorflow可视化MNIST手写数字训练
简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写 ...
- TensorFlow(四):手写数字识别
一:数据集 采用MNIST数据集:-->官网 数据集被分成两部分:60000行的训练数据集和10000行的测试数据集. 其中每一张图片包含28*28个像素,我们把这个数组展开成一个向量,长度为2 ...
随机推荐
- Java“微服务”还能这么玩!
"微服务"加个引号是因为这不是传统定义的微服务架构,顶多算是"小服务"架构,因为服务实例由集群节点统一加载,非独立部署.下面以图说明一下服务调用流程. 一. ...
- python序列(八)列表推导式实列
1.列表推导式列表推导能非常简洁的构成一个新列表:只用一条简洁的表达式即可对得到的元素进行转换变形. 格式:[表达式 for 变量 in 列表]或[表达式 for 变量 in 列表 if 条件] 过滤 ...
- Azure Terraform(一)入门简介
一,引言 众所周知,当企业将项目整体架构资源迁移到云上,云基础设施架构师就要根据现有项目搭建整体项目的基础设施资源的架构,然后我们的云运维工程师就要根据设计好基础设施的架构图来创建云上资源,但是在构筑 ...
- 201326JJ
学期(如2020-2021-1) 学号(如:20201326) <信息安全专业导论>第四周学习总结 作业信息 这个作业属于哪个课程 (https://edu.cnblogs.com/cam ...
- 从零开始部署发布Java项目到服务器的Docker中
本以为很简单,由于没用过docker和java,本文将会阐述一路遇到的拦路虎. 首先,写好Java项目,本地跑通. 可能会遇到的问题: 1.jar包正常运行,war包404: 如何打包很多教程都有介绍 ...
- checkBox判断是否选中的方法
这里可以分为两种情况:JQuery对象和DOM对象: 通常我们用JQuery判断元素的属性的时候喜欢用 attr("attrName"); 但是尝试过的同学可能都知道,这种方法判断 ...
- docker 使用笔记
docker 使用笔记 1. 与宿主机之间拷贝文件 docker cp test.html 99f952ac05e6cd879f14aa6c9d0db02aaf498634edc4f6cdc9953c ...
- 深入理解Redis系列之持久化
redis持久化配置 redis.conf // RDB配置 save 900 1 save 300 10 save 60 10000 // AOF配置 appendonly yes //AOF三种同 ...
- Pytest测试框架(三):pytest fixture 用法
xUnit style 结构的 fixture用于初始化测试函数, pytest fixture是对传统的 xUnit 架构的setup/teardown功能的改进.pytest fixture为测试 ...
- java数组基础知识
数组的定义:int[] array=new array[n];int array[]={, , , ,};定义了数组,JVM就会给其一个空间,数组是应用类型的数据类型,其存储方式是随机存储. 数组的遍 ...