本文主要内容为:图的定义以及基本术语

  • 图的定义

图G的组成:由 数据元素的集合E 和 数据间的关系集合E 组成,记作:G = <V, E>

顶点 (vertex):数据元素,V就是顶点的有穷非空集合

边 (edge): 顶点的序偶对,例如 (v1, v2),E就是边的集合

    • 子图

定义:设 G=<V, E> 是一个图,E' 是 E 的子集,V' 是 V 的子集,且 E' 中的边权 仅与 V' 中的顶点相关联,

则 G' = <V', E'> 称为 图G 的子图

特殊的子图:空图,只有一个顶点,图G本身

    • 无向图

定义:代表一条边的顶点的序偶是无序的(即该边无方向)

表示:无序的序偶对用圆括号表示,例如 (v1, v2) 和 (v2, v1) 是代表同一条边

    • 有向图

定义:代表一条边的顶点的序偶是有序的(即该边有方向)

表示:有序的序偶对用尖括号表示,例如 <v1, v2> 和 <v2, v1> 是代表不同的边

弧:有向图的边的别称

弧尾 / 始点:边的起点,例如 <v1, v2> 中的 v1

弧头 / 终点:边的终点,例如 <v1, v2> 中的 v2

    • 带权图

定义:图的每条边边或弧都附带权(weight)

权的作用:可以用于表示从一个顶点到另一个顶点的距离,费用,代价等等

    • 稀疏图:边比较少的图
    • 稠密图:边比较多的图
    • 完全图:任何两个顶点间都有边相关联的图
  • 图的基本术语

    • 无向图顶点 v 的度:与该顶点相关的边的数目,记作 D(v)
    • 有向图顶点 v 的入度:以顶点 v 为终点的弧的数目,记作 ID(v)
    • 有向图顶点 v 的出度:以顶点 v 为起点的弧的数目, 记作 OD(v)
    • 终端顶点 / 叶子:出度为 0 的顶点
    • 路径:从一个顶点到另一个顶点,中间允许经过其他顶点,有向图的路径也是有向的
    • 路径长度:路径上的 边 或 弧  * 权重 之和
    • 回路 / 环:路径的起点和终点是同一个顶点的路径
    • 图的根:从该顶点有路径可以到达图的其他所有顶点
    • 连通图:无向图的任意两个顶点有路径
    • 强连通图:有向图的任意两个顶点之间有来回路径
    • 连通分量:无向图中的极大连通子图
    • 强连通分量:有向图强连通的极大子图
    • 网络:带权的连通图
  • 图的相关计算

n:表示图中顶点的数目

e:表示图中边的数目

    • 无向图 e 的取值范围:[0,n(n - 1) / 2]
    • 有向图 e 的取值范围:[0, n(n - 1)]

图 Graph的更多相关文章

  1. 纸上谈兵: 图 (graph)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 图(graph)是一种比较松散的数据结构.它有一些节点(vertice),在某些节 ...

  2. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  3. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  4. 算法与数据结构基础 - 图(Graph)

    图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...

  5. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  6. echart——关系图graph详解

    VueEchart组件见上一篇 <template> <VueEcharts :options="options" auto-resize /> </ ...

  7. 某种带权有向无环图(graph)的所有路径的求法

    // 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...

  8. 小白学Python(18)——pyecharts 关系图 Graph

    Graph-基本示例 import json import os from pyecharts import options as opts from pyecharts.charts import ...

  9. 【JZOJ6357】小ω的图(graph)

    description analysis 拆位从高位到低位贪心 对于当前位,如果把所有当前位为\(1\)的边塞入,\(1\)和\(n\)连通,则该位必须为\(1\) 这个是因为高位的\(1\)比所有低 ...

随机推荐

  1. Flink Native Kubernetes实战

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. Java 类型信息详解和反射机制

    本文部分摘自 On Java 8 RTTI RTTI(RunTime Type Information)运行时类型信息,能够在程序运行时发现和使用类型信息,把我们从只能在编译期知晓类型信息并操作的局限 ...

  3. 5、Spring Boot缓存

    1.JSR107 Java Caching定义了5个核心接口,分别是CachingProvider.CacheManager.Cache.Entry.Expiry. CachingProvider:定 ...

  4. 06、MyBatis 逆向工程

    1.MyBatis逆向简介   mybatis需要程序员自己编写sql语句,mybatis官方提供逆向工程,可以针对单表自动生成mybatis执行所需要的代码(mapper.java.mapper.x ...

  5. webug第十四关:存储型XSS

    第十四关:存储型XSS 打开发现是评论区 留言加入xss语句

  6. web安全入门--入门条件

    介绍:网络安全由习大大提出,是继海.陆.空.外太空的第五大作战领域,也是一个关系国家安全和主权.社会稳定.民族文化继承和发扬的重要问题.其重要性,正随着全球信息化步伐的加快越来越重要.接下来,我向大家 ...

  7. MindManager思维导图应用到办公中需要注意什么

    MindManager思维导图是一个易于使用的项目管理软件,能很好地提高项目组的工作效率和小组成员之间的协作性.接下来,小编就为大家介绍三个能利用好该思维导图软件办公的技巧. 一.审阅会议--合作办公 ...

  8. 使用Camtasia给视频课件添加自动聚焦的效果

    随着现在抖音与微课市场的大火,原来可能只是因为兴趣爱好而剪辑制作了一些视频为爱发电,现在却完全可以当作一个事业来做了. 但是课件录制的时候,大部分的录制屏幕软件都是全屏或者固定屏幕大小录制的,有些小细 ...

  9. Wine和CrossOver之间的关系简单介绍

    相信有些小伙伴们不太了解Wine和CrossOver之间的关系与区别,然而对此又很好奇,所以小编今天将给大家介绍一下这两者之间的关系与区别. Wine是什么? Windows.Linux和macOS是 ...

  10. 在FL Studio编曲软件中查找采样的音高

    相信玩音乐的小伙伴们都遇到过这种情况,在用FL Studio编曲时,想添加一段音频采样,由于采样的调式与我们正在编曲的调式不同,音频之间的衔接就是一个非常头疼的问题,要解决采样的调式,我们就得先确认这 ...