折线图1

import pyecharts.options as opts
from pyecharts.charts import Line

x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]

(
Line()
.set_global_opts(
# 是否显示工具栏组件
tooltip_opts = opts.TooltipOpts(is_show=True),
# 类目轴,适用于离散的类目数据,为该类型时必须通过 data 设置类目数据。(坐标轴配置项)
xaxis_opts = opts.AxisOpts(type_="category"),
yaxis_opts = opts.AxisOpts(
type_="value",
# 显示坐标轴刻度
axistick_opts=opts.AxisTickOpts(is_show=True),
# 显示分割线
splitline_opts=opts.SplitLineOpts(is_show=True),
) )
.add_xaxis(
xaxis_data = x_data)
.add_yaxis(
series_name="销售额",
y_axis=y_data,
# 标记的图形
symbol="emptyCircle",
# 是否显示symbol
is_symbol_show=True,
# 标签配置项 显示标签
# 值为True时每个点上为对应的数值
label_opts=opts.LabelOpts(is_show=False),
)
.render("basic_line_chart.html")

)

输出结果为:

堆叠区域折线图

from pyecharts.charts import Line
import pyecharts.options as opts
x_data = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
(
Line()
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="邮件营销",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[120, 132, 101, 134, 90, 230, 210],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="联盟广告",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[220, 182, 191, 234, 290, 330, 310],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="视频广告",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[150, 232, 201, 154, 190, 330, 410],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="直接访问",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[320, 332, 301, 334, 390, 330, 320],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="搜索引擎",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[820, 932, 901, 934, 1290, 1330, 1320],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="折线图堆叠"),
# 坐标轴触发,主要在柱状图,折线图等会使用类目轴的图表中使用(提示框配置项)
tooltip_opts=opts.TooltipOpts(trigger="axis"),
# 坐标轴配置项
yaxis_opts=opts.AxisOpts(
type_="value",
# 显示坐标轴刻度(坐标轴刻度配置项)
axistick_opts=opts.AxisTickOpts(is_show=True),
# 显示分割线(坐标轴分割线配置项)
splitline_opts=opts.SplitLineOpts(is_show=True),
),
# 坐标轴两边留白策略,默认为True
xaxis_opts=opts.AxisOpts(type_="category",boundary_gap=False) )
.render("stacked_line_chart.html")

)

输出结果为:

词云图

import pyecharts.options as opts
from pyecharts.charts import WordCloud

data = [
("生活资源", ""),
("供热管理", ""),
("供气质量", ""),
("生活用水管理", ""),
("一次供水问题", ""),
("交通运输", ""),
("城市交通", ""),
("环境保护", ""),
("房地产管理", ""),
("城乡建设", ""),
("社会保障与福利", ""),
("社会保障", ""),
("文体与教育管理", ""),
("公共安全", ""),
("公交运输管理", ""),
("出租车运营管理", ""),
("供热管理", ""),
("市容环卫", ""),
("自然资源管理", ""),
("粉尘污染", ""),
("噪声污染", ""),
("土地资源管理", ""),
("物业服务与管理", ""),
("医疗卫生", ""),
("粉煤灰污染", ""),
("占道", ""),
("供热发展", ""),
("农村土地规划管理", ""),
("生活噪音", ""),
("供热单位影响", ""),
("城市供电", ""),
("房屋质量与安全", ""),
("大气污染", ""),
("房屋安全", ""),
("文化活动", ""),
("拆迁管理", ""),
("公共设施", ""),
("供气质量", ""),
("供电管理", ""),
("燃气管理", ""),
("教育管理", ""),
("医疗纠纷", ""),
("执法监督", ""),
]

(
WordCloud()
.add(series_name="热点分析",data_pair=data,shape="diamond",word_size_range=[5,60],rotate_step=45)
.set_global_opts(
# 标题配置项
title_opts=opts.TitleOpts(
title="热点分析",title_textstyle_opts=opts.TextStyleOpts(font_size=40,font_family="Arial")
),
# 提示框组件配置
tooltip_opts = opts.TooltipOpts(is_show=True),
)
# 输出
.render("wordcloud.html")
)

输出结果为:

pyecharts的使用的更多相关文章

  1. Python爬取南京市往年天气预报,使用pyecharts进行分析

    上一次分享了使用matplotlib对爬取的豆瓣书籍排行榜进行分析,但是发现python本身自带的这个绘图分析库还是有一些局限,绘图不够美观等,在网上搜索了一波,发现现在有很多的支持python的绘图 ...

  2. pyecharts使用

    安装 pyecharts 兼容 Python2 和 Python3.目前版本为 0.1.2 pip install pyecharts 入门 首先开始来绘制你的第一个图表 from pyecharts ...

  3. 数据分析——pyecharts

    导入类库 from pyecharts import Pie, Bar, Gauge, EffectScatter, WordCloud, Map, Grid, Line, Timeline impo ...

  4. Python:数据可视化pyecharts的使用

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生 ...

  5. Python中的可视化神器:pyecharts

    pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则 前言 我们都知道python上的一款可视化工具matplotlib,而前些 ...

  6. 数据可视化之pyecharts

    Echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 安装 ...

  7. python可视化pyecharts

    python可视化pyecharts 简单介绍 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化 ...

  8. 【转】Anaconda下安装pyecharts步骤及常见错误

    本文转载自:https://blog.csdn.net/skj1995/article/details/81187954 (1)之前看了几篇博客,有人说用cmd命令在目录C:\Users\Admini ...

  9. 发现一个强大的可视化第三方库pyecharts

    pyecharts 目前尚在不断的更新中,值得重点研究和学习的图表库

  10. 利用pyecharts做地图数据展示

    首先, pip install pyecharts 为了地图上的数据能显示完全,加载好需要的城市地理坐标数据. pip install echarts-countries-pypkg pip inst ...

随机推荐

  1. 使用jQuery的replaceWith()方法要注意的地方

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  2. shell 脚本 for,while,case 语句详解及案例

    ################for循环语句的结构#############使用for循环语句时,需要指定一个变量及可能的取值列表,针对每个不同的取值重复执行相同的命令序列,直到变量值用完退出循环. ...

  3. Linux性能优化实战学习笔记:第二十四讲

    一.磁盘 1.机械磁盘 2.固态磁盘 3.相同磁盘随机I/O比连续I/O慢很多 4.最小单位 5.接口 6.RAID陈列卡 7.网路存储 二.通用块层 1.概念 2.第一功能 3.第二功能 4.I/O ...

  4. DP问题(3) : hdu 1080

    题目转自hdu 1080,题目传送门 题目大意: 不想翻译! 解题思路: 其实就是一道变异的求lcs(Longest common subsequence 最长公共子序列)的题 不过,它的依据是下面这 ...

  5. 热情组——项目冲刺 Day6

    项目相关 作业相关 具体描述 班级 班级链接 作业要求 链接地址 团队名称 热情组 作业目标 实现软件制作,以及在福大的传播 Github链接 链接地址 SCRUM部分: 成员昵称 昨日目标 开始时间 ...

  6. 利用SQL生成模型实体类

    DECLARE @TableName sysname = 'TableName'; DECLARE @Result VARCHAR(MAX) = 'public class ' + @TableNam ...

  7. 关于交叉编译Nodejs的坑

    前言 交叉编译Nodejs到其他平台上的时候,遇到了2个坑,网上极少有人提及,花了整个晚上才解决,在此记录下. 我的编译目标环境为: 龙芯3A 编译脚本 cd 代码目录 export PREFIX=/ ...

  8. pytorch 查看中间变量的梯度

    pytorch 为了节省显存,在反向传播的过程中只针对计算图中的叶子结点(leaf variable)保留了梯度值(gradient).但对于开发者来说,有时我们希望探测某些中间变量(intermed ...

  9. 创建Visual Studio 2019离线安装包

    可以在不同的网络环境和不同的计算机上在线安装微软Visual Studio 2019.微软提供的在线安装工具(Visual Studio web installer)可以让用户在线下载最新版本Visu ...

  10. Python【每日一问】36

    问: 基础题: 809*x=800*x+9*x+1 其中 x 代表的两位数, 8*x 的结果为两位数, 9*x 的结果为 3 位数.求 x ,及计算 809*x 的结果. 提高题: 对文件" ...