折线图1

import pyecharts.options as opts
from pyecharts.charts import Line

x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]

(
Line()
.set_global_opts(
# 是否显示工具栏组件
tooltip_opts = opts.TooltipOpts(is_show=True),
# 类目轴,适用于离散的类目数据,为该类型时必须通过 data 设置类目数据。(坐标轴配置项)
xaxis_opts = opts.AxisOpts(type_="category"),
yaxis_opts = opts.AxisOpts(
type_="value",
# 显示坐标轴刻度
axistick_opts=opts.AxisTickOpts(is_show=True),
# 显示分割线
splitline_opts=opts.SplitLineOpts(is_show=True),
) )
.add_xaxis(
xaxis_data = x_data)
.add_yaxis(
series_name="销售额",
y_axis=y_data,
# 标记的图形
symbol="emptyCircle",
# 是否显示symbol
is_symbol_show=True,
# 标签配置项 显示标签
# 值为True时每个点上为对应的数值
label_opts=opts.LabelOpts(is_show=False),
)
.render("basic_line_chart.html")

)

输出结果为:

堆叠区域折线图

from pyecharts.charts import Line
import pyecharts.options as opts
x_data = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
(
Line()
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="邮件营销",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[120, 132, 101, 134, 90, 230, 210],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="联盟广告",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[220, 182, 191, 234, 290, 330, 310],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="视频广告",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[150, 232, 201, 154, 190, 330, 410],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="直接访问",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[320, 332, 301, 334, 390, 330, 320],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="搜索引擎",
# 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
stack="总量",
y_axis=[820, 932, 901, 934, 1290, 1330, 1320],
# 是否显示标签(标签配置项)
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="折线图堆叠"),
# 坐标轴触发,主要在柱状图,折线图等会使用类目轴的图表中使用(提示框配置项)
tooltip_opts=opts.TooltipOpts(trigger="axis"),
# 坐标轴配置项
yaxis_opts=opts.AxisOpts(
type_="value",
# 显示坐标轴刻度(坐标轴刻度配置项)
axistick_opts=opts.AxisTickOpts(is_show=True),
# 显示分割线(坐标轴分割线配置项)
splitline_opts=opts.SplitLineOpts(is_show=True),
),
# 坐标轴两边留白策略,默认为True
xaxis_opts=opts.AxisOpts(type_="category",boundary_gap=False) )
.render("stacked_line_chart.html")

)

输出结果为:

词云图

import pyecharts.options as opts
from pyecharts.charts import WordCloud

data = [
("生活资源", ""),
("供热管理", ""),
("供气质量", ""),
("生活用水管理", ""),
("一次供水问题", ""),
("交通运输", ""),
("城市交通", ""),
("环境保护", ""),
("房地产管理", ""),
("城乡建设", ""),
("社会保障与福利", ""),
("社会保障", ""),
("文体与教育管理", ""),
("公共安全", ""),
("公交运输管理", ""),
("出租车运营管理", ""),
("供热管理", ""),
("市容环卫", ""),
("自然资源管理", ""),
("粉尘污染", ""),
("噪声污染", ""),
("土地资源管理", ""),
("物业服务与管理", ""),
("医疗卫生", ""),
("粉煤灰污染", ""),
("占道", ""),
("供热发展", ""),
("农村土地规划管理", ""),
("生活噪音", ""),
("供热单位影响", ""),
("城市供电", ""),
("房屋质量与安全", ""),
("大气污染", ""),
("房屋安全", ""),
("文化活动", ""),
("拆迁管理", ""),
("公共设施", ""),
("供气质量", ""),
("供电管理", ""),
("燃气管理", ""),
("教育管理", ""),
("医疗纠纷", ""),
("执法监督", ""),
]

(
WordCloud()
.add(series_name="热点分析",data_pair=data,shape="diamond",word_size_range=[5,60],rotate_step=45)
.set_global_opts(
# 标题配置项
title_opts=opts.TitleOpts(
title="热点分析",title_textstyle_opts=opts.TextStyleOpts(font_size=40,font_family="Arial")
),
# 提示框组件配置
tooltip_opts = opts.TooltipOpts(is_show=True),
)
# 输出
.render("wordcloud.html")
)

输出结果为:

pyecharts的使用的更多相关文章

  1. Python爬取南京市往年天气预报,使用pyecharts进行分析

    上一次分享了使用matplotlib对爬取的豆瓣书籍排行榜进行分析,但是发现python本身自带的这个绘图分析库还是有一些局限,绘图不够美观等,在网上搜索了一波,发现现在有很多的支持python的绘图 ...

  2. pyecharts使用

    安装 pyecharts 兼容 Python2 和 Python3.目前版本为 0.1.2 pip install pyecharts 入门 首先开始来绘制你的第一个图表 from pyecharts ...

  3. 数据分析——pyecharts

    导入类库 from pyecharts import Pie, Bar, Gauge, EffectScatter, WordCloud, Map, Grid, Line, Timeline impo ...

  4. Python:数据可视化pyecharts的使用

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生 ...

  5. Python中的可视化神器:pyecharts

    pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则 前言 我们都知道python上的一款可视化工具matplotlib,而前些 ...

  6. 数据可视化之pyecharts

    Echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 安装 ...

  7. python可视化pyecharts

    python可视化pyecharts 简单介绍 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化 ...

  8. 【转】Anaconda下安装pyecharts步骤及常见错误

    本文转载自:https://blog.csdn.net/skj1995/article/details/81187954 (1)之前看了几篇博客,有人说用cmd命令在目录C:\Users\Admini ...

  9. 发现一个强大的可视化第三方库pyecharts

    pyecharts 目前尚在不断的更新中,值得重点研究和学习的图表库

  10. 利用pyecharts做地图数据展示

    首先, pip install pyecharts 为了地图上的数据能显示完全,加载好需要的城市地理坐标数据. pip install echarts-countries-pypkg pip inst ...

随机推荐

  1. Python--单元四练习

    一.算24 描述: 给出4个小于10的正整数,可以使用加.减.乘.除4种运算以及括号把4个数连接起来得到一个表达式.现在问题是,是否存在一种方式使得所得表达式的结果等于24.‪‬‪‬‪‬‪‬‪‬‮‬‪ ...

  2. Bootstrap-table 增删改查

    1.引入bootstarp-table 系类的js/css文件 @*1.Jquery组件引用*@ <script src="~/Scripts/jquery-1.10.2.js&quo ...

  3. coreml之通过URL加载模型

    在xcode中使用mlmodel模型,之前说的最简单的方法是将模型拖进工程中即可,xcode会自动生成有关模型的前向预测接口,这种方式非常简单,但是更新模型就很不方便. 今天说下另外一种通过URL加载 ...

  4. 逗号表达式(c)

    #include <stdio.h> #include <stdlib.h> int main(void) { ; ; printf(" %d\n ", a ...

  5. Salesforce 版本控制 - VS Code + GitHub + Salesforce

    使用VS Code开发Salesforce有个很好的地方是可以联接GitHub进行代码版本控制,点击查看使用VS Code开发SalesForce 第一步:安装GIthub Desktop Githu ...

  6. java OutOfMemorry

    首先需要明确OOM并不一定会导致程序挂掉,导致服务不可用的是堆内存被耗尽,从而使得主线程直接退出,或者所有工作线程频繁因为OOM异常终止,java分配数组会直接消耗内存,一个对象引用会占用四个字节. ...

  7. Larave框架下Contracts契约的解析

    本篇文章给大家带来的内容是关于Larave框架下Contracts契约的解析,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助. Contracts Laravel 的契约是一组定义框架提 ...

  8. 前端性能优化--回流(reflow)和重绘(repaint)

    HTML加载时发生了什么 在页面加载时,浏览器把获取到的HTML代码解析成1个DOM树,DOM树里包含了所有HTML标签,包括display:none隐藏,还有用JS动态添加的元素等. 浏览器把所有样 ...

  9. Unity调用windows系统dialog 选择文件夹

    #region 调用windows系统dialog 选择文件夹 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)] public ...

  10. MongoDB学习笔记(五)

    MongoDB 查看执行计划 MongoDB 中的 explain() 函数可以帮助我们查看查询相关的信息,这有助于我们快速查找到搜索瓶颈进而解决它,本文我们就来看看 explain() 的一些用法及 ...