一、概述

1、与对称加密算法的主要差别在于,加密和解密的密钥不相同,一个公开(公钥),一个保密(私钥)。主要解决了对称加密算法密钥分配管理的问题,提高了算法安全性。

2、非对称加密算法的加密、解密的效率比较低。在算法设计上,非对称加密算法对待加密的数据长度有着苛刻的要求。例如RSA算法要求待加密的数据不得大于53个字节。

3、非对称加密算法主要用于 交换对称加密算法的密钥,而非数据交换

4、java6提供实现了DH和RSA两种算法。Bouncy Castle提供了E1Gamal算法支持。除了上述三种算法还有一个ECC算法,目前没有相关的开源组件提供支持

二、模型分析

我们还是以甲乙双方发送数据为模型进行分析

1、甲方(消息发送方,下同)构建密钥对(公钥+私钥),甲方公布公钥给乙方(消息接收方,下同)

2、乙方以甲方发送过来的公钥作为参数构造密钥对(公钥+私钥),将构造出来的公钥公布给甲方

3、甲方用“甲方的私钥+乙方的公钥”构造本地密钥

4、乙方用“乙方的私钥+甲方的公钥”构造本地的密钥

5、这个时候,甲乙两方本地新构造出来的密钥应该一样,甲乙双方可以通过本地密钥进行数据的加密和解密

6、然后就可以使用AES这类对称加密算法进行数据的安全传送了。传送过程参考AES的相关算法

三、代码分析

package com.ca.test;
import <a href="http://lib.csdn.net/base/java" class='replace_word' title="Java 知识库" target='_blank' style='color:#df3434; font-weight:bold;'>Java</a>.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.HashMap;
import java.util.Map;
import javax.crypto.Cipher;
import javax.crypto.KeyAgreement;
import javax.crypto.SecretKey;
import javax.crypto.interfaces.DHPrivateKey;
import javax.crypto.interfaces.DHPublicKey;
import javax.crypto.spec.DHParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import org.apache.commons.codec.binary.Base64;
/**
* 非对称加密算法DH算法组件
* 非对称算法一般是用来传送对称加密算法的密钥来使用的,所以这里我们用DH算法模拟密钥传送
* 对称加密AES算法继续做我们的数据加解密
* @author kongqz
* */
public class DHCoder {
//非对称密钥算法
public static final String KEY_ALGORITHM="DH"; //本地密钥算法,即对称加密算法。可选des,aes,desede
public static final String SECRET_ALGORITHM="AES"; /**
* 密钥长度,DH算法的默认密钥长度是1024
* 密钥长度必须是64的倍数,在512到1024位之间
* */
private static final int KEY_SIZE=512;
//公钥
private static final String PUBLIC_KEY="DHPublicKey"; //私钥
private static final String PRIVATE_KEY="DHPrivateKey"; /**
* 初始化甲方密钥
* @return Map 甲方密钥的Map
* */
public static Map<String,Object> initKey() throws Exception{
//实例化密钥生成器
KeyPairGenerator keyPairGenerator=KeyPairGenerator.getInstance(KEY_ALGORITHM);
//初始化密钥生成器
keyPairGenerator.initialize(KEY_SIZE);
//生成密钥对
KeyPair keyPair=keyPairGenerator.generateKeyPair();
//甲方公钥
DHPublicKey publicKey=(DHPublicKey) keyPair.getPublic();
//甲方私钥
DHPrivateKey privateKey=(DHPrivateKey) keyPair.getPrivate();
//将密钥存储在map中
Map<String,Object> keyMap=new HashMap<String,Object>();
keyMap.put(PUBLIC_KEY, publicKey);
keyMap.put(PRIVATE_KEY, privateKey);
return keyMap; } /**
* 初始化乙方密钥
* @param key 甲方密钥(这个密钥是通过第三方途径传递的)
* @return Map 乙方密钥的Map
* */
public static Map<String,Object> initKey(byte[] key) throws Exception{
//解析甲方的公钥
//转换公钥的材料
X509EncodedKeySpec x509KeySpec=new X509EncodedKeySpec(key);
//实例化密钥工厂
KeyFactory keyFactory=KeyFactory.getInstance(KEY_ALGORITHM);
//产生公钥
PublicKey pubKey=keyFactory.generatePublic(x509KeySpec);
//由甲方的公钥构造乙方密钥
DHParameterSpec dhParamSpec=((DHPublicKey)pubKey).getParams();
//实例化密钥生成器
KeyPairGenerator keyPairGenerator=KeyPairGenerator.getInstance(keyFactory.getAlgorithm());
//初始化密钥生成器
keyPairGenerator.initialize(dhParamSpec);
//产生密钥对
KeyPair keyPair=keyPairGenerator.genKeyPair();
//乙方公钥
DHPublicKey publicKey=(DHPublicKey)keyPair.getPublic();
//乙方私钥
DHPrivateKey privateKey=(DHPrivateKey)keyPair.getPrivate();
//将密钥存储在Map中
Map<String,Object> keyMap=new HashMap<String,Object>();
keyMap.put(PUBLIC_KEY, publicKey);
keyMap.put(PRIVATE_KEY, privateKey);
return keyMap;
}
/**
* 加密
* @param data待加密数据
* @param key 密钥
* @return byte[] 加密数据
* */
public static byte[] encrypt(byte[] data,byte[] key) throws Exception{
//生成本地密钥
SecretKey secretKey=new SecretKeySpec(key,SECRET_ALGORITHM);
//数据加密
Cipher cipher=Cipher.getInstance(secretKey.getAlgorithm());
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
return cipher.doFinal(data);
}
/**
* 解密
* @param data 待解密数据
* @param key 密钥
* @return byte[] 解密数据
* */
public static byte[] decrypt(byte[] data,byte[] key) throws Exception{
//生成本地密钥
SecretKey secretKey=new SecretKeySpec(key,SECRET_ALGORITHM);
//数据解密
Cipher cipher=Cipher.getInstance(secretKey.getAlgorithm());
cipher.init(Cipher.DECRYPT_MODE, secretKey);
return cipher.doFinal(data);
}
/**
* 构建密钥
* @param publicKey 公钥
* @param privateKey 私钥
* @return byte[] 本地密钥
* */
public static byte[] getSecretKey(byte[] publicKey,byte[] privateKey) throws Exception{
//实例化密钥工厂
KeyFactory keyFactory=KeyFactory.getInstance(KEY_ALGORITHM);
//初始化公钥
//密钥材料转换
X509EncodedKeySpec x509KeySpec=new X509EncodedKeySpec(publicKey);
//产生公钥
PublicKey pubKey=keyFactory.generatePublic(x509KeySpec);
//初始化私钥
//密钥材料转换
PKCS8EncodedKeySpec pkcs8KeySpec=new PKCS8EncodedKeySpec(privateKey);
//产生私钥
PrivateKey priKey=keyFactory.generatePrivate(pkcs8KeySpec);
//实例化
KeyAgreement keyAgree=KeyAgreement.getInstance(keyFactory.getAlgorithm());
//初始化
keyAgree.init(priKey);
keyAgree.doPhase(pubKey, true);
//生成本地密钥
SecretKey secretKey=keyAgree.generateSecret(SECRET_ALGORITHM);
return secretKey.getEncoded();
}
/**
* 取得私钥
* @param keyMap 密钥map
* @return byte[] 私钥
* */
public static byte[] getPrivateKey(Map<String,Object> keyMap){
Key key=(Key)keyMap.get(PRIVATE_KEY);
return key.getEncoded();
}
/**
* 取得公钥
* @param keyMap 密钥map
* @return byte[] 公钥
* */
public static byte[] getPublicKey(Map<String,Object> keyMap) throws Exception{
Key key=(Key) keyMap.get(PUBLIC_KEY);
return key.getEncoded();
}
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
//生成甲方的密钥对
Map<String,Object> keyMap1=DHCoder.initKey();
//甲方的公钥
byte[] publicKey1=DHCoder.getPublicKey(keyMap1); //甲方的私钥
byte[] privateKey1=DHCoder.getPrivateKey(keyMap1);
System.out.println("甲方公钥:/n"+Base64.encodeBase64String(publicKey1));
System.out.println("甲方私钥:/n"+Base64.encodeBase64String(privateKey1)); //由甲方的公钥产生的密钥对
Map<String,Object> keyMap2=DHCoder.initKey(publicKey1);
byte[] publicKey2=DHCoder.getPublicKey(keyMap2);
byte[] privateKey2=DHCoder.getPrivateKey(keyMap2);
System.out.println("乙方公钥:/n"+Base64.encodeBase64String(publicKey2));
System.out.println("乙方私钥:/n"+Base64.encodeBase64String(privateKey2)); //组装甲方的本地加密密钥,由乙方的公钥和甲方的私钥组合而成
byte[] key1=DHCoder.getSecretKey(publicKey2, privateKey1);
System.out.println("甲方的本地密钥:/n"+Base64.encodeBase64String(key1)); //组装乙方的本地加密密钥,由甲方的公钥和乙方的私钥组合而成
byte[] key2=DHCoder.getSecretKey(publicKey1, privateKey2);
System.out.println("乙方的本地密钥:/n"+Base64.encodeBase64String(key2)); System.out.println("================密钥对构造完毕,开始进行加密数据的传输=============");
String str="密码交换算法";
System.out.println("/n===========甲方向乙方发送加密数据==============");
System.out.println("原文:"+str);
System.out.println("===========使用甲方本地密钥对进行数据加密==============");
//甲方进行数据的加密
byte[] code1=DHCoder.encrypt(str.getBytes(), key1);
System.out.println("加密后的数据:"+Base64.encodeBase64String(code1)); System.out.println("===========使用乙方本地密钥对数据进行解密==============");
//乙方进行数据的解密
byte[] decode1=DHCoder.decrypt(code1, key2);
System.out.println("乙方解密后的数据:"+new String(decode1)+"/n/n"); System.out.println("===========反向进行操作,乙方向甲方发送数据==============/n/n"); str="乙方向甲方发送数据DH"; System.out.println("原文:"+str); //使用乙方本地密钥对数据进行加密
byte[] code2=DHCoder.encrypt(str.getBytes(), key2);
System.out.println("===========使用乙方本地密钥对进行数据加密==============");
System.out.println("加密后的数据:"+Base64.encodeBase64String(code2)); System.out.println("=============乙方将数据传送给甲方======================");
System.out.println("===========使用甲方本地密钥对数据进行解密=============="); //甲方使用本地密钥对数据进行解密
byte[] decode2=DHCoder.decrypt(code2, key1); System.out.println("甲方解密后的数据:"+new String(decode2));
}
} 控制台输出结果:
甲方公钥:
MIHgMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYXrgHz
W5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpDTWSG
kx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgANEAAJBALk1l11UT5Y1
evJv1sLQAXo7Yj/olsPMVJ/7zOx503CRcovA5Q+k2OyIZsl5H2qGCnqi+Da0/9zZx0go8Y/j5B4=
甲方私钥:
MIHRAgEAMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYX
rgHzW5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpD
TWSGkx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgAQyAjB0haXhPoDW
gLMF79N1ZZGu1dtHWAObe9obKAh4hGH0HsAsSY8qy17ZE0IyiOwYPXA=
乙方公钥:
MIHgMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYXrgHz
W5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpDTWSG
kx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgANEAAJBAOWqgUur2jDR
057ohEH4eb3KwOdmcbsv4GnvIlCVzwpBKVlUk0MMIeV8APLz/xIjjoOnNZx3rNknaO/+v85tG3g=
乙方私钥:
MIHRAgEAMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYX
rgHzW5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpD
TWSGkx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgAQyAjB+/HgBYVlO
e2eAeU0HoWQyYsHt0tSPUZUqCyY9mWEK/7soxsR/6pfAb1npaaI1NO0=
甲方的本地密钥:
+E068E5KSWvLYrB5o1ryIY1VFt6WcUnBrXvlBYN++/M=
乙方的本地密钥:
+E068E5KSWvLYrB5o1ryIY1VFt6WcUnBrXvlBYN++/M=
================密钥对构造完毕,开始进行加密数据的传输=============
===========甲方向乙方发送加密数据==============
原文:密码交换算法
===========使用甲方本地密钥对进行数据加密==============
加密后的数据:1PUMKnkyfKauO6kTG5UDtA==
===========使用乙方本地密钥对数据进行解密==============
乙方解密后的数据:密码交换算法 ===========反向进行操作,乙方向甲方发送数据============== 原文:乙方向甲方发送数据DH
===========使用乙方本地密钥对进行数据加密==============
加密后的数据:VGLdXmtGyBaE87NiSoHX+yvwyUkAx/qYKYWv+jEwkBY=
=============乙方将数据传送给甲方======================
===========使用甲方本地密钥对数据进行解密==============
甲方解密后的数据:乙方向甲方发送数据DH

四、总结

1、非对称加密算法主要用来传递密钥的,而且性能较低。但是安全性超强。非对称加密算法能加密的数据长度也受限

2、用非对称加密算法算出甲乙双方本地的密钥后,可以选择DES/AES/DESede这些对称加密算法进行数据的传送了

补充一下,由于权限问题,可以存在报错:
java.security.InvalidKeyException: Illegal key size or default parameters

解决方案:http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
下载无政策限制文件,将压缩包里的jar文件覆盖系统java的jre安装路径下响应的jar包即可解决问题。

DH密钥加解密的更多相关文章

  1. Java中RSA非对称密钥加解密使用示例

    一.简介: RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它.RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名.这个算法经受住了多年深入的密码分析,虽然密码分 ...

  2. java加解密算法

    什么是加密算法?百度百科给出的解释如下: 数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为“密文”,使其只能在输入相应的密钥之后才能显示出本来内容, ...

  3. Java 加解密技术系列文章

    Java 加解密技术系列之 总结 Java 加解密技术系列之 DH Java 加解密技术系列之 RSA Java 加解密技术系列之 PBE Java 加解密技术系列之 AES Java 加解密技术系列 ...

  4. 加解密、PKI与CA基础

    介绍 这门知识如果以前尝过的各位想必都知道:枯燥无比!因此在文中我会尽量讲的生动些,举一些例子,并试图以一个完整的例子来贯穿整个讲述过程.今年又恰逢莎翁逝世400周年,一方面也为了纪念这位伟大的作家. ...

  5. CTF中编码与加解密总结

    CTF中那些脑洞大开的编码和加密 转自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到 ...

  6. AES的256位密钥加解密报 java.security.InvalidKeyException: Illegal key size or default parameters 异常的处理及处理工具

    一.出现的现象为了数据代码在传输过程中的安全,很多时候我们都会将要传输的数据进行加密,然后等对方拿到后再解密使用.我们在使用AES加解密的时候,在遇到128位密钥加解密的时候,没有进行什么特殊处理:然 ...

  7. nodejs加解密

    加密分类 可逆加密和不可逆加密 不可逆加密: 加密后不可解密,只能通过碰撞密文以极小的概率解密; 可逆加密: 加密后可以解密;包括对称加密与非对称加密; 对称加密双方采用共同密钥; 非对称加密: 这种 ...

  8. 10.Java 加解密技术系列之 DH

    Java 加解密技术系列之 DH 序 概念 原理 代码实现 结果 结束语 序 上一篇文章中简单的介绍了一种非对称加密算法 — — RSA,今天这篇文章,继续介绍另一种非对称加密算法 — — DH.当然 ...

  9. Rsa加解密Java、C#、php通用代码 密钥转换工具

    之前发了一篇"TripleDes的加解密Java.C#.php通用代码",后面又有项目用到了Rsa加解密,还是在不同系统之间进行交互,Rsa在不同语言的密钥格式不一样,所以过程中主 ...

随机推荐

  1. Appscan漏洞之Authentication Bypass Using HTTP Verb Tampering

    本次针对 Appscan漏洞 Authentication Bypass Using HTTP Verb Tampering(HTTP动词篡改导致的认证旁路)进行总结,如下: 1. Authentic ...

  2. SecureCRT中文乱码解决已设置UTF-8了

    参考网址:http://www.iitshare.com/securecrt-chinese-garbled-solution.html 问题描述 SecureCRT与SecureFX的常规选项里面已 ...

  3. 关于MQ的几件小事:消息队列的用途、优缺点、技术选型

    原文:https://www.cnblogs.com/jack1995/p/10908789.html 1.为什么使用消息队列? (1)解耦:可以在多个系统之间进行解耦,将原本通过网络之间的调用的方式 ...

  4. CCS设置第一个li的元素与其他li样式不同

    <div class="ly-content-list"> <ul> <li> <div class="title"& ...

  5. 在eclipse运行一个项目报端口被占的问题

    1.端口被占问题解决方法. 我们运行javaweb项目的时候,如果不幸你的项目出现了上图的那种情况,不要慌,仅仅是端口被占了而已,只需要打开你tomcat里面的bin里面的shutdown.bat即可 ...

  6. Java—网络编程总结(整理版)

    1. 概述 计算机网络是通过传输介质.通信设施和网络通信协议,把分散在不同地点的计算机设备互连起来的,实现资源共享和数据传输的系统.网络编程就是编写程序使互联网的两个(或多个)设备(如计算机)之间进行 ...

  7. test20190830 NOIP 模拟赛

    100+70+0=170.这套题早就被上传到BZOJ上了,可惜我一到都没做过. BZOJ4765 普通计算姬 小G的计算姬可以解决这么个问题:给定一棵n个节点的带权树,节点编号为1到n,以root为根 ...

  8. LOJ129 Lyndon 分解

    Lyndon 分解 样例 样例输入 1 ababa 样例输出 1 2 4 5 样例输入 2 bbababaabaaabaaaab 样例输出 2 1 2 4 6 9 13 18 样例输入 3 azAZ0 ...

  9. LINQ查询表达式(1) - 查询表达式基础

    LINQ包括五个部分:LINQto Objects.LINQ to DataSets.LINQ to SQL.LINQ to Entities.LINQ to XML. 什么是查询?它有什么用途? “ ...

  10. KVM虚拟机,如何设置虚拟机的CPU型号与物理机是一样的

    1.在kvm主机上修改配置文件 [root@node160 ~]# virsh edit CentOS-7.3-X86_64 将xml配置文件中的: <cpu mode='custom' mat ...