A. marshland

考试时想到了网络流,然而不会建图,就死了。

正解是最大费用可行流。

比较容易想到的是将每个点拆为两个点,

s连没有危险值的入点,

没有危险值的入点连有危险值的入点,入点出点之间限流有费用,

出点再连没有危险值的出点,这些出点连向t。

不断跑spfa,通过有流量的边,记录下前趋。

将前趋的边的流量改变,EK算法。

B. party

因为只有单向边,达成尽快到齐的条件是,终点为c个点的lca。

m的范围比较小,于是可以用bitset维护。

比较容易想到了在倍增求lca的同时维护bitset,取并集。

然而空间刚好卡到600多MB,时间也死了。

树链剖分。

空间返回到O(n*m)级别,比倍增少一个log。

问题转化为每个人从自己所有集合中选择相同数量的最多元素,要求互不相同。

网络流+二分可行。

源点向每个人建流量为mid的边,每个人向它包含元素建流量为1的边,每个元素向汇点建流量为1的边。

左部点流满就表示可行。

如果将每个人拆为若干个点,问题其实是求二分图完美匹配。

于是想到霍尔定理(???):

一个二分图 G 存在完美匹配, 当且仅当 X 中的任意 k 个点都至少与 Y 中的 k 个点邻接.

二分答案,枚举$2^{c*mid}$显然是可行的,然而复杂度真的死了。

考虑不同的左部点只有c个,枚举$2^c$,

1表示考虑这个人。

将答案与 所有考虑的人的bitset并集中1的个数除以考虑的人数 取min。

总复杂度为$O(\frac{qlog^2nm}{32})$。

考虑到没有修改操作,直接维护每个点到重链顶的bitset,可以将复杂度降低一个$logn$。

推荐$unsigned long long$手写$bitset$,

主要是可以将$O(n)$的$count$函数通过预处理变成$O(\frac{n}{32})$,

或者继续循环展开将所有操作改为$O(1)$。

 struct bitset{
#define lowbit(x) (x&-x)
unsigned long long bit[];
inline void reset(){
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
bit[]=;
}
inline friend void operator |=(bitset &a,const bitset &b){
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
a.bit[]|=b.bit[];
}
inline friend bitset operator |(const bitset &a,const bitset &b){
bitset ans;
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
ans.bit[]=a.bit[]|b.bit[];
return ans;
}
inline void set(const int x){
bit[x>>]|=(unsigned long long)<<(x&);
}
inline int count(){
register int cnt=;
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
cnt+=ct[bit[]&]+ct[(bit[]>>)&]+ct[(bit[]>>)&]+ct[(bit[]>>)&];
return cnt;
}
};

C. platform

后缀数组。

然而完全忘记了怎么打。

没改到,鸽了。

模拟26A 题解的更多相关文章

  1. [CQOI2012]模拟工厂 题解(搜索+贪心)

    [CQOI2012]模拟工厂 题解(搜索+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327574 链接题目地址:洛谷P3161 BZOJ P26 ...

  2. NOIP第7场模拟赛题解

    NOIP模拟赛第7场题解: 题解见:http://www.cqoi.net:2012/JudgeOnline/problemset.php?page=13 题号为2221-2224. 1.car 边界 ...

  3. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  4. HGOI NOIP模拟4 题解

    NOIP国庆模拟赛Day5 题解 T1 马里奥 题目描述 马里奥将要参加 NOIP 了,他现在在一片大陆上,这个大陆上有着许多浮空岛,并且其中一座浮空岛上有一个传送门,马里奥想要到达传送门从而前往 N ...

  5. 10.8 wtx模拟题题解

    填坑 orz w_x_c_q w_x_c_q的模拟赛(150pts,炸了) money 题目背景: 王小呆又陷入自己的梦里.(活在梦里...) 题目描述: 王小呆是一个有梦想的小菜鸡,那就是赚好多好多 ...

  6. [NOIP模拟13]题解

    A.矩阵游戏 其实挺水的? 考场上根本没有管出题人的疯狂暗示(诶这出题人有毛病吧这么简单的东西写一大堆柿子),而且推公式能力近乎没有,所以死掉了. 很显然乘法有交换率结合率所以操作顺序对最终结果没什么 ...

  7. 「题解」NOIP模拟测试题解乱写II(36)

    毕竟考得太频繁了于是不可能每次考试都写题解.(我解释个什么劲啊又没有人看) 甚至有的题目都没有改掉.跑过来写题解一方面是总结,另一方面也是放松了. NOIP模拟测试36 T1字符 这题我完全懵逼了.就 ...

  8. 【洛谷】xht模拟赛 题解

    前言 大家期待已久并没有的题解终于来啦~ 这次的T1和HAOI2016撞题了...深表歉意...表示自己真的不知情... 天下的水题总是水得相似,神题各有各的神法.--<安娜·卡列妮娜> ...

  9. 10.9 guz模拟题题解

    感谢@guz 顾z的题题解 考试共三道题,其中 第一题help共10个测试点,时间限制为 1000ms,空间限制为 256MB. 第二题escape共20个测试点,时间限制为1000ms2000ms, ...

随机推荐

  1. 解决Spring Boot 从1.x升级到 2.x 后 单点登陆(SSO)问题

    解决Spring Boot 从1.x升级到 2.x 后 单点登陆(SSO)问题   在学习Spring Cloud 时,遇到了授权服务oauth 相关内容时,总是一知半解,因此决定先把Spring S ...

  2. 12、微信小程序实现授权

    在index.wxml中: <!--index.wxml--> <view wx:if="{{isHide}}"> <view wx:if=" ...

  3. jsonserver的安装及启动

    JsonServer 主要的作用就是搭建本地的数据接口,创建json文件,便于调试调用 是一个 Node 模块,运行 Express 服务器,可以指定一个 json 文件作为 api 的数据源 官网: ...

  4. HTML5 表单新增内容

    一.H5 新增控件 1.datalist 元素 datalist 标签定义选项列表,请与 input 元素配合使用该元素.可为输入框提供一个可选的列表,可以直接选择列表项,也可以不选择列表中的项,自行 ...

  5. Android源码分析(四)-----Android源码编译及刷机步骤

    一 : 获取源码: 每个公司服务器地址不同,以如下源码地址为例: http://10.1.14.6/android/Qualcomm/msm89xx/branches/msm89xx svn环境执行: ...

  6. 量化金融策略开源框架:QUANTAXIS

    简介: QUANTAXIS量化金融策略框架,是一个面向中小型策略团队的量化分析解决方案,是一个从数据爬取.清洗存储.分析回测.可视化.交易复盘的本地一站式解决方案. QUANTAXIS量化金融策略框架 ...

  7. thinkPHP+LayUI 懒加载实现

    html <div class="layui-container" id="container"> </div> js,要引入layui ...

  8. nginx配置ssl证书流程及常见问题

    背景:         项目开发中用到了微信小程序,但是服务器配置URL必须是HTTPS,所以需要通过配置nginx的SSL模块来支持HTTPS访问,也就是说,要做一个网站域名为 dmsdbj.com ...

  9. VS code key shortcuts for windows

    mac上的快捷键,尽量是选择像我用vs studio上靠近. ctrl+K+S: 显示快捷键列 ctrl+shift+p: 系统配置命令行 ctrl+p:项目中文件列表,选择文件 Alt+M:当前文件 ...

  10. prometheus学习系列十一: Prometheus pushgateway的使用

    由于网络问题或者安全问题,可能我们的数据无法直接暴露出一个entrypoint 给prometheus采集. 这个时候可能就需要一个pushgateway来作为中间者完成中转工作.  promethe ...