面试官问我:平常如何对你的 Java 程序进行调优?
作者:张俊城, 郭理勇, 刘建
来源:http://t.cn/AiCTERJz
Java 应用性能优化是一个老生常谈的话题,典型的性能问题如页面响应慢、接口超时,服务器负载高、并发数低,数据库频繁死锁等。
尤其是在“糙快猛”的互联网开发模式大行其道的今天,随着系统访问量的日益增加和代码的臃肿,各种性能问题开始纷至沓来。
Java 应用性能的瓶颈点非常多,比如磁盘、内存、网络 I/O 等系统因素,Java 应用代码,JVM GC,数据库,缓存等。
笔者根据个人经验,将 Java 性能优化分为 4 个层级:应用层、数据库层、框架层、JVM 层,如图 1 所示。
图 1.Java 性能优化分层模型
每层优化难度逐级增加,涉及的知识和解决的问题也会不同。
比如应用层需要理解代码逻辑,通过 Java 线程栈定位有问题代码行等;
数据库层面需要分析 SQL、定位死锁等;
框架层需要懂源代码,理解框架机制;
JVM 层需要对 GC 的类型和工作机制有深入了解,对各种 JVM 参数作用了然于胸。
围绕 Java 性能优化,有两种最基本的分析方法:现场分析法和事后分析法。
现场分析法通过保留现场,再采用诊断工具分析定位。现场分析对线上影响较大,部分场景(特别是涉及到用户关键的在线业务时)不太合适。
事后分析法需要尽可能多收集现场数据,然后立即恢复服务,同时针对收集的现场数据进行事后分析和复现。
下面我们从性能诊断工具出发,分享一些案例与实践。
1 性能诊断工具
性能诊断一种是针对已经确定有性能问题的系统和代码进行诊断,还有一种是对预上线系统提前性能测试,确定性能是否符合上线要求。
本文主要针对前者,后者可以用各种性能压测工具(例如 JMeter)进行测试,不在本文讨论范围内。
针对 Java 应用,性能诊断工具主要分为两层:OS 层面和 Java 应用层面(包括应用代码诊断和 GC 诊断)。
OS 的诊断主要关注的是 CPU、Memory、I/O 三个方面。
2 CPU 诊断
对于 CPU 主要关注平均负载(Load Average),CPU 使用率,上下文切换次数(Context Switch)。
通过 top 命令可以查看系统平均负载和 CPU 使用率,图 2 为通过 top 命令查看某系统的状态。
图 2.top 命令示例
平均负载有三个数字:63.66,58.39,57.18,分别表示过去 1 分钟、5 分钟、15 分钟机器的负载。
按照经验,若数值小于 0.7*CPU 个数,则系统工作正常;若超过这个值,甚至达到 CPU 核数的四五倍,则系统的负载就明显偏高。
图 2 中 15 分钟负载已经高达 57.18,1 分钟负载是 63.66(系统为 16 核),说明系统出现负载问题,且存在进一步升高趋势,需要定位具体原因了。
通过 vmstat 命令可以查看 CPU 的上下文切换次数,如图 3 所示:
图 3.vmstat 命令示例
上下文切换次数发生的场景主要有如下几种:
1)时间片用完,CPU 正常调度下一个任务;
2)被其它优先级更高的任务抢占;
3)执行任务碰到 I/O 阻塞,挂起当前任务,切换到下一个任务;
4)用户代码主动挂起当前任务让出 CPU;
5)多任务抢占资源,由于没有抢到被挂起;
6)硬件中断。
Java 线程上下文切换主要来自共享资源的竞争。
一般单个对象加锁很少成为系统瓶颈,除非锁粒度过大。
但在一个访问频度高,对多个对象连续加锁的代码块中就可能出现大量上下文切换,成为系统瓶颈。
比如在我们系统中就曾出现 log4j 1.x 在较大并发下大量打印日志,出现频繁上下文切换,大量线程阻塞,导致系统吞吐量大降的情况,其相关代码如清单 1 所示,升级到 log4j 2.x 才解决这个问题。
for(Category c = this; c != null; c=c.parent) { // Protected against simultaneous call to addAppender, removeAppender,… synchronized(c) { if (c.aai != null) { write += c.aai.appendLoopAppenders(event); } … }}
3 Memory
从操作系统角度,内存关注应用进程是否足够,可以使用 free –m 命令查看内存的使用情况。
通过 top 命令可以查看进程使用的虚拟内存 VIRT 和物理内存 RES,根据公式 VIRT = SWAP + RES 可以推算出具体应用使用的交换分区(Swap)情况,使用交换分区过大会影响 Java 应用性能,可以将 swappiness 值调到尽可能小。
因为对于 Java 应用来说,占用太多交换分区可能会影响性能,毕竟磁盘性能比内存慢太多。
4 I/O
I/O 包括磁盘 I/O 和网络 I/O,一般情况下磁盘更容易出现 I/O 瓶颈。
通过 iostat 可以查看磁盘的读写情况,通过 CPU 的 I/O wait 可以看出磁盘 I/O 是否正常。
如果磁盘 I/O 一直处于很高的状态,说明磁盘太慢或故障,成为了性能瓶颈,需要进行应用优化或者磁盘更换。
除了常用的 top、 ps、vmstat、iostat 等命令,还有其他 Linux 工具可以诊断系统问题,如 mpstat、tcpdump、netstat、pidstat、sar 等。
Brendan 总结列出了 Linux 不同设备类型的性能诊断工具,如图 4 所示,可供参考。
图 4.Linux 性能观测工具
5 Java 应用诊断及工具
应用代码性能问题是相对好解决的一类性能问题。
通过一些应用层面监控报警,如果确定有问题的功能和代码,直接通过代码就可以定位;
或者通过 top+jstack,找出有问题的线程栈,定位到问题线程的代码上,也可以发现问题。
对于更复杂,逻辑更多的代码段,通过 Stopwatch 打印性能日志往往也可以定位大多数应用代码性能问题。
常用的 Java 应用诊断包括线程、堆栈、GC 等方面的诊断。
jstack
jstack 命令通常配合 top 使用,通过 top -H -p pid 定位 Java 进程和线程,再利用 jstack -l pid 导出线程栈。
由于线程栈是瞬态的,因此需要多次 dump,一般 3 次 dump,一般每次隔 5s 就行。
将 top 定位的 Java 线程 pid 转成 16 进制,得到 Java 线程栈中的 nid,可以找到对应的问题线程栈。
图 5. 通过 top –H -p 查看运行时间较长 Java 线程
如图 5 所示,其中的线程 24985 运行时间较长,可能存在问题,转成 16 进制后,通过 Java 线程栈找到对应线程 0x6199 的栈如下,从而定位问题点,如图 6 所示。
图 6.jstack 查看线程堆栈
JProfiler
JProfiler 可对 CPU、堆、内存进行分析,功能强大,如图 7 所示。
同时结合压测工具,可以对代码耗时采样统计。
图 7. 通过 JProfiler 进行内存分析
6 GC 诊断
Java GC 解决了程序员管理内存的风险,但 GC 引起的应用暂停成了另一个需要解决的问题。
JDK 提供了一系列工具来定位 GC 问题,比较常用的有 jstat、jmap,还有第三方工具 MAT 等。
jstat
jstat 命令可打印 GC 详细信息,Young GC 和 Full GC 次数,堆信息等。
其命令格式为
jstat –gcxxx -t pid <interval> <count>,如图 8 所示。
图 8.jstat 命令示例
jmap
jmap 打印 Java 进程堆信息 jmap –heap pid。
通过 jmap –dump:file=xxx pid 可 dump 堆到文件,然后通过其它工具进一步分析其堆使用情况。
MAT
MAT 是 Java 堆的分析利器,提供了直观的诊断报告,内置的 OQL 允许对堆进行类 SQL 查询,功能强大,outgoing reference 和 incoming reference 可以对对象引用追根溯源。
图 9.MAT 示例
图 9 是 MAT 使用示例,MAT 有两列显示对象大小,分别是 Shallow size 和 Retained size。
前者表示对象本身占用内存的大小,不包含其引用的对象。
后者是对象自己及其直接或间接引用的对象的 Shallow size 之和,即该对象被回收后 GC 释放的内存大小,一般说来关注后者大小即可。
对于有些大堆 (几十 G) 的 Java 应用,需要较大内存才能打开 MAT。
通常本地开发机内存过小,是无法打开的,建议在线下服务器端安装图形环境和 MAT,远程打开查看。
或者执行 mat 命令生成堆索引,拷贝索引到本地,不过这种方式看到的堆信息有限。
为了诊断 GC 问题,建议在 JVM 参数中加上-XX:+PrintGCDateStamps。
常用的 GC 参数如图 10 所示。
图 10. 常用 GC 参数
对于 Java 应用,通过 top+jstack+jmap+MAT 可以定位大多数应用和内存问题,可谓必备工具。
有些时候,Java 应用诊断需要参考 OS 相关信息,可使用一些更全面的诊断工具,比如 Zabbix(整合了 OS 和 JVM 监控)等。
在分布式环境中,分布式跟踪系统等基础设施也对应用性能诊断提供了有力支持。
7 性能优化实践
在介绍了一些常用的性能诊断工具后,下面将结合我们在 Java 应用调优中的一些实践,从 JVM 层、应用代码层以及数据库层进行案例分享。
JVM 调优:GC 之痛
XX商业平台某系统重构时选择 RMI 作为内部远程调用协议,系统上线后开始出现周期性的服务停止响应,暂停时间由数秒到数十秒不等。
通过观察 GC 日志,发现服务自启动后每小时会出现一次 Full GC。
由于系统堆设置较大,Full GC 一次暂停应用时间会较长,这对线上实时服务影响较大。
经过分析,在重构前系统没有出现定期 Full GC 的情况,因此怀疑是 RMI 框架层面的问题。
通过公开资料,发现 RMI 的 GDC(Distributed Garbage Collection,分布式垃圾收集)会启动守护线程定期执行 Full GC 来回收远程对象,清单 2 中展示了其守护线程代码。
清单 2.DGC 守护线程源代码
private static class Daemon extends Thread { public void run() { for (;;) { //… long d = maxObjectInspectionAge(); if (d >= l) { System.gc(); d = 0; } //… } }}
定位问题后解决起来就比较容易了。
一种是通过增加-XX:+DisableExplicitGC 参数,直接禁用系统 GC 的显示调用,但对使用 NIO 的系统,会有堆外内存溢出的风险。
另一种方式是通过调大 -Dsun.rmi.dgc.server.gcInterval 和-Dsun.rmi.dgc.client.gcInterval 参数,增加 Full GC 间隔,同时增加参数-XX:+ExplicitGCInvokesConcurrent。
将一次完全 Stop-The-World 的 Full GC 调整为一次并发 GC 周期,减少应用暂停时间,同时对 NIO 应用也不会造成影响。
从图 11 可知,调整之后的 Full GC 次数 在 3 月之后明显减少。
图 11.Full GC 监控统计
GC 调优对高并发大数据量交互的应用还是很有必要的,尤其是默认 JVM 参数通常不满足业务需求,需要进行专门调优。
GC 日志的解读有很多公开的资料,本文不再赘述。
GC 调优目标基本有三个思路:
降低 GC 频率,可以通过增大堆空间,减少不必要对象生成;
降低 GC 暂停时间,可以通过减少堆空间,使用 CMS GC 算法实现;
避免 Full GC,调整 CMS 触发比例,避免 Promotion Failure 和 Concurrent mode failure(老年代分配更多空间,增加 GC 线程数加快回收速度),减少大对象生成等。
应用层调优:嗅到代码的坏味道
从应用层代码调优入手,剖析代码效率下降的根源,无疑是提高 Java 应用性能的很好的手段之一。
某商业广告系统(采用 Nginx 进行负载均衡)某次日常上线后,其中有几台机器负载急剧升高,CPU 使用率迅速打满。
我们对线上进行了紧急回滚,并通过 jmap 和 jstack 对其中某台服务器的现场进行保存。
图 12. 通过 MAT 分析堆栈现场
堆栈现场如图 12 所示,根据 MAT 对 dump 数据的分析,发现最多的内存对象为 byte[] 和 java.util.HashMap $Entry,且 java.util.HashMap $Entry 对象存在循环引用。
初步定位在该 HashMap 的 put 过程中有可能出现了死循环问题(图中 java.util.HashMap $Entry 0x2add6d992cb8 和 0x2add6d992ce8 的 next 引用形成循环)。
查阅相关文档定位这属于典型的并发使用的场景错误 (http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6423457) 。
简要的说就是 HashMap 本身并不具备多线程并发的特性,在多个线程同时 put 操作的情况下,内部数组进行扩容时会导致 HashMap 的内部链表形成环形结构,从而出现死循环。
针对此次上线,最大的改动在于通过内存缓存网站数据来提升系统性能,同时使用了懒加载机制,如清单 3 所示。
清单 3. 网站数据懒加载代码
private static Map<Long, UnionDomain> domainMap = new HashMap<Long, UnionDomain>(); private boolean isResetDomains() { if (CollectionUtils.isEmpty(domainMap)) { // 从远端 http 接口获取网站详情 List<UnionDomain> newDomains = unionDomainHttpClient .queryAllUnionDomain(); if (CollectionUtils.isEmpty(domainMap)) { domainMap = new HashMap<Long, UnionDomain>(); for (UnionDomain domain : newDomains) { if (domain != null) { domainMap.put(domain.getSubdomainId(), domain); } } } return true; } return false; }
可以看到此处的 domainMap 为静态共享资源,它是 HashMap 类型,在多线程情况下会导致其内部链表形成环形结构,出现死循环。
通过对前端 Nginx 的连接和访问日志可以看到,由于在系统重启后 Nginx 积攒了大量的用户请求,在 Resin 容器启动,大量用户请求涌入应用系统,多个用户同时进行网站数据的请求和初始化工作,导致 HashMap 出现并发问题。
在定位故障原因后解决方法则比较简单,主要的解决方法有:
(1)采用 ConcurrentHashMap 或者同步块的方式解决上述并发问题;
(2)在系统启动前完成网站缓存加载,去除懒加载等;
(3)采用分布式缓存替换本地缓存等。
对于坏代码的定位,除了常规意义上的代码审查外,借助诸如 MAT 之类的工具也可以在一定程度对系统性能瓶颈点进行快速定位。
但是一些与特定场景绑定或者业务数据绑定的情况,却需要辅助代码走查、性能检测工具、数据模拟甚至线上引流等方式才能最终确认性能问题的出处。
以下是我们总结的一些坏代码可能的一些特征,供大家参考:
(1)代码可读性差,无基本编程规范;
(2)对象生成过多或生成大对象,内存泄露等;
(3)IO 流操作过多,或者忘记关闭;
(4)数据库操作过多,事务过长;
(5)同步使用的场景错误;
(6)循环迭代耗时操作等。
数据库层调优:死锁噩梦
对于大部分 Java 应用来说,与数据库进行交互的场景非常普遍,尤其是 OLTP 这种对于数据一致性要求较高的应用,数据库的性能会直接影响到整个应用的性能。
搜狗商业平台系统作为广告主的广告发布和投放平台,对其物料的实时性和一致性都有极高的要求,我们在关系型数据库优化方面也积累了一定的经验。
对于广告物料库来说,较高的操作频繁度(特别是通过批量物料工具操作)很极易造成数据库的死锁情况发生,其中一个比较典型的场景是广告物料调价。
客户往往会频繁的对物料的出价进行调整,从而间接给数据库系统造成较大的负载压力,也加剧了死锁发生的可能性。
下面以搜狗商业平台某广告系统广告物料调价的案例进行说明。
某商业广告系统某天访问量突增,造成系统负载升高以及数据库频繁死锁,死锁语句如图 13 所示。
图 13. 死锁语句
其中,groupdomain 表上索引为 idx_groupdomain_accountid (accountid),idx_groupdomain_groupid(groupid),primary(groupdomainid) 三个单索引结构,采用 Mysql innodb 引擎。
此场景发生在更新组出价时,场景中存在着组、组行业(groupindus 表)和组网站(groupdomain 表)。
当更新组出价时,若组行业出价使用组出价(通过 isusegroupprice 标示,若为 1 则使用组出价)。
同时若组网站出价使用组行业出价(通过 isuseindusprice 标示,若为 1 则使用组行业出价)时,也需要同时更新其组网站出价。
由于每个组下面最大可以有 3000 个网站,因此在更新组出价时会长时间的对相关记录进行锁定。
从上面发生死锁的问题可以看到,事务 1 和事务 2 均选择了 idx_groupdomain_accountid 的单列索引。
根据 Mysql innodb 引擎加锁的特点,在一次事务中只会选择一个索引使用,而且如果一旦使用二级索引进行加锁后,会尝试将主键索引进行加锁。
进一步分析可知事务 1 在请求事务 2 持有的`idx_groupdomain_accountid`二级索引加锁(加锁范围“space id 5726 page no 8658 n bits 824 index”),但是事务 2 已获得该二级索引 (“space id 5726 page no 8658 n bits 824 index”) 上所加的锁,在等待请求锁定主键索引 PRIMARY 索引上的锁。
由于事务 2 等待执行时间过长或长时间不释放锁,导致事务 1 最终发生回滚。
通过对当天访问日志跟踪可以看到,当天有客户通过脚本方式发起大量的修改推广组出价的操作,导致有大量事务在循环等待前一个事务释放锁定的主键 PRIMARY 索引。
该问题的根源实际上在于 Mysql innodb 引擎对于索引利用有限,在 Oracle 数据库中此问题并不突出。
解决的方式自然是希望单个事务锁定的记录数越少越好,这样产生死锁的概率也会大大降低。
最终使用了(accountid, groupid)的复合索引,缩小了单个事务锁定的记录条数,也实现了不同计划下的推广组数据记录的隔离,从而减少该类死锁的发生几率。
通常来说,对于数据库层的调优我们基本上会从以下几个方面出发:
(1)在 SQL 语句层面进行优化:慢 SQL 分析、索引分析和调优、事务拆分等;
(2)在数据库配置层面进行优化:比如字段设计、调整缓存大小、磁盘 I/O 等数据库参数优化、数据碎片整理等;
(3)从数据库结构层面进行优化:考虑数据库的垂直拆分和水平拆分等;
(4)选择合适的数据库引擎或者类型适应不同场景,比如考虑引入 NoSQL 等。
8 总结与建议
性能调优同样遵循 2-8 原则,80%的性能问题是由 20%的代码产生的,因此优化关键代码事半功倍。
同时,对性能的优化要做到按需优化,过度优化可能引入更多问题。
对于 Java 性能优化,不仅要理解系统架构、应用代码,同样需要关注 JVM 层甚至操作系统底层。
总结起来主要可以从以下几点进行考虑:
1)基础性能的调优
这里的基础性能指的是硬件层级或者操作系统层级的升级优化,比如网络调优,操作系统版本升级,硬件设备优化等。
比如 F5 的使用和 SDD 硬盘的引入,包括新版本 Linux 在 NIO 方面的升级,都可以极大的促进应用的性能提升;
2)数据库性能优化
包括常见的事务拆分,索引调优,SQL 优化,NoSQL 引入等。
比如在事务拆分时引入异步化处理,最终达到一致性等做法的引入,包括在针对具体场景引入的各类 NoSQL 数据库,都可以大大缓解传统数据库在高并发下的不足;
3)应用架构优化
引入一些新的计算或者存储框架,利用新特性解决原有集群计算性能瓶颈等;
或者引入分布式策略,在计算和存储进行水平化,包括提前计算预处理等,利用典型的空间换时间的做法等;
都可以在一定程度上降低系统负载;
4)业务层面的优化
技术并不是提升系统性能的唯一手段,在很多出现性能问题的场景中,其实可以看到很大一部分都是因为特殊的业务场景引起的。
如果能在业务上进行规避或者调整,其实往往是最有效的。
·END·
程序员的成长之路
路虽远,行则必至
本文原发于 同名微信公众号「程序员的成长之路」,回复「1024」你懂得,给个赞呗。
回复 [ 520 ] 领取程序员最佳学习方式
回复 [ 256 ] 查看 Java 程序员成长规划
面试官问我:平常如何对你的 Java 程序进行调优?的更多相关文章
- 这道面试必问的JVM面试题70%的Java程序员会做错
前言 聊聊JVM,一个熟悉又陌生的名词,从认识Java的第一天起,我们就会听到这个名字,在参加工作的前一两年,面试的时候还会经常被问到JDK,JRE,JVM这三者的区别. JVM可以说和我们是老朋友了 ...
- 面试官问我MySQL调优,我真的是
面试官:要不你来讲讲你们对MySQL是怎么调优的? 候选者:哇,这命题很大阿...我认为,对于开发者而言,对MySQL的调优重点一般是在「开发规范」.「数据库索引」又或者说解决线上慢查询上. 候选者: ...
- 每日一问:面试结束时面试官问"你有什么问题需要问我呢",该如何回答?
面试结束时面试官问"你有什么问题需要问我呢",该如何回答?
- 面试官问我,Redis分布式锁如何续期?懵了。
前言 上一篇[面试官问我,使用Dubbo有没有遇到一些坑?我笑了.]之后,又有一位粉丝和我说在面试过程中被虐了.鉴于这位粉丝是之前肥朝的粉丝,而且周一又要开启新一轮的面试,为了回馈他长期以来的支持,所 ...
- 面试官问,说一个你在工作非常有价值的bug
如果你去参考面试,做足了准备,面对面试官员从容不迫,吐沫横飞的大谈自己的工作经历.突然,面试官横插一句:说一个你在工作非常有价值的bug.顿时,整个空气都仿佛都凝固了!“What?”... 我想没几个 ...
- 面试官问:JS的this指向
前言 面试官出很多考题,基本都会变着方式来考察this指向,看候选人对JS基础知识是否扎实.读者可以先拉到底部看总结,再谷歌(或各技术平台)搜索几篇类似文章,看笔者写的文章和别人有什么不同(欢迎在评论 ...
- 当面试官问你sql优化的时候。。。
当面试官问你有关sql优化的问题时,直接拿笔写给他: 8-select 9-distinct<column_list> 1-from left_table 3-<join_type& ...
- 面试官问你JS基本类型时他想知道什么?
面试的时候我们经常会被问答js的数据类型.大部分情况我们会这样回答包括:1.基本类型(值类型或者原始类型): Number.Boolean.String.NULL.Undefined以及ES6的Sym ...
- 面试官问线程安全的List,看完再也不怕了!
最近在Java技术栈知识星球里面有球友问到了线程安全的 List: 扫码查看答案或加入知识星球 栈长在之前的文章<出场率比较高的一道多线程安全面试题>里面讲过 ArrayList 的不安全 ...
随机推荐
- Java自学-类和对象 包
Java中的 包 包: package 把比较接近的类,规划在同一个包下 步骤 1 : 把比较接近的类,规划在同一个包下 Hero,ADHero 规划在一个包,叫做charactor(角色) Item ...
- Vue第一天
什么是 Vue.js? Vue.js是前端的主流框架之一,与 Angular.js.React.js一起,并称为前端三大主流框架 Vue.js是一套构建用户界面的框架,只关注视图层,它不仅易上手,还便 ...
- 在vue-cli中如何安装scss,并全局引入scss
在vue-cli脚手架采用scss正确的使用姿势 步骤一: 安装node-sass.sass-loader.style-loader npm install node-sass --save-dev ...
- CSS文本单行或者多行超出区域省略号(...)显示方法
单行超出时,主要用到几个CSS属性: 1.text-overflow : clip | ellipsis ; clip : 不显示省略标记(...),而是简单的裁切ellipsis : 当对象内文本溢 ...
- MES实施可能会遇到的问题,这里都帮你解决
MES系统选型关键技术的发展已日趋成熟,开发MES系统技术并不是问题,困难的是如何确定系统的功能.规格,如何成功地使用MES系统,以充分发挥其作用,下面给大家分析这两大块内容. 实施MES系统选型的困 ...
- Mysql 单表查询-排序-分页-group by初识
Mysql 单表查询-排序-分页-group by初识 对于select 来说, 分组聚合(((group by; aggregation), 排序 (order by** ), 分页查询 (limi ...
- golang reflect知识集锦
目录 反射之结构体tag Types vs Kinds reflect.Type vs reflect.Value 2019/4/20 补充 reflect.Value转原始类型 获取类型底层类型 遍 ...
- Linux学习之组管理和权限管理
Linux组的基本介绍 在Linux中的每个用户必须属于一个组,不能独立于组外.在Linux中每个文件有所有者,所在组,其他组的概念. 1)所有者 2)所在组 3)其他组 4)改变用户所在的组 文件/ ...
- qt5.12 解决显示中文乱码问题
在菜单栏 文件->选项,找到文本编辑器 文件编码设置如图 在cpp文件中加入 #pragma execution_character_set("utf-8") 之后就可以 ...
- Linux操作系统内核编译之NTFS文件系统模块支持案例
Linux操作系统内核编译之NTFS文件系统模块支持案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.内核编译概述 单内核体系设计.但充分借鉴了微内核设计体系的优点,为内核引 ...