Signature:
pd.read_excel(
['io', 'sheet_name=0', 'header=0', 'skiprows=None', 'skip_footer=0', 'index_col=None', 'names=None', 'usecols=None', 'parse_dates=False', 'date_parser=None', 'na_values=None', 'thousands=None', 'convert_float=True', 'converters=None', 'dtype=None', 'true_values=None', 'false_values=None', 'engine=None', 'squeeze=False', '**kwds'],
)
Docstring:
Read an Excel table into a pandas DataFrame Parameters
----------
io : string, path object (pathlib.Path or py._path.local.LocalPath),
file-like object, pandas ExcelFile, or xlrd workbook.
The string could be a URL. Valid URL schemes include http, ftp, s3,
and file. For file URLs, a host is expected. For instance, a local
file could be file://localhost/path/to/workbook.xlsx
sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed
sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned.
list|None -> Dict of DataFrames is returned, with keys representing
sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame
* 1 -> 2nd sheet as a DataFrame
* "Sheet1" -> 1st sheet as a DataFrame
* [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
* None -> All sheets as a dictionary of DataFrames sheetname : string, int, mixed list of strings/ints, or None, default 0
.. deprecated:: 0.21.0
Use `sheet_name` instead header : int, list of ints, default 0
Row (0-indexed) to use for the column labels of the parsed
DataFrame. If a list of integers is passed those row positions will
be combined into a ``MultiIndex``. Use None if there is no header.
skiprows : list-like
Rows to skip at the beginning (0-indexed)
skip_footer : int, default 0
Rows at the end to skip (0-indexed)
index_col : int, list of ints, default None
Column (0-indexed) to use as the row labels of the DataFrame.
Pass None if there is no such column. If a list is passed,
those columns will be combined into a ``MultiIndex``. If a
subset of data is selected with ``usecols``, index_col
is based on the subset.
names : array-like, default None
List of column names to use. If file contains no header row,
then you should explicitly pass header=None
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the Excel cell content, and return the transformed
content.
dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
Use `object` to preserve data as stored in Excel and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion. .. versionadded:: 0.20.0 true_values : list, default None
Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None
Values to consider as False .. versionadded:: 0.19.0 parse_cols : int or list, default None
.. deprecated:: 0.21.0
Pass in `usecols` instead. usecols : int or list, default None
* If None then parse all columns,
* If int then indicates last column to be parsed
* If list of ints then indicates list of column numbers to be parsed
* If string then indicates comma separated list of Excel column letters and
column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
both sides.
squeeze : boolean, default False
If the parsed data only contains one column then return a Series
na_values : scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted
as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'.
thousands : str, default None
Thousands separator for parsing string columns to numeric. Note that
this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN
values are overridden, otherwise they're appended to.
verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns
engine: string, default None
If io is not a buffer or path, this must be set to identify io.
Acceptable values are None or xlrd
convert_float : boolean, default True
convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
data will be read in as floats: Excel stores all numbers as floats
internally Returns
-------
parsed : DataFrame or Dict of DataFrames
DataFrame from the passed in Excel file. See notes in sheet_name
argument for more information on when a Dict of Dataframes is returned.
File: c:\users\lenovo\anaconda3\lib\site-packages\pandas\io\excel.py
Type: function

  

read_excle的更多相关文章

  1. python接口自动化1

    组织架构: 包括配置文件,反射.文件路径.Excel操作.测试报告生成 case.config [MODE] file_name=case_data.xlsx mode={"register ...

  2. Pandas模块:表计算与数据分析

    目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.p ...

  3. Pandas:表计算与数据分析

    目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.p ...

  4. 利用Python进行数据分析:【Pandas】(Series+DataFrame)

    一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的.3.pandas的主要功能 --具备对其功能的数据结构DataFrame.S ...

  5. pyhton pandas数据分析基础入门(一文看懂pandas)

    //2019.07.17 pyhton中pandas数据分析基础入门(一文看懂pandas), 教你迅速入门pandas数据分析模块(后面附有入门完整代码,可以直接拷贝运行,含有详细的代码注释,可以轻 ...

  6. python 作业 批量读取excel文件并合并为一张excel

    1 #!/usr/bin/env python 2 # coding: utf-8 3 4 def concat_file(a,b): 5 #如何批量读取并快速合并文件夹中的excel文件 6 imp ...

随机推荐

  1. TCP/IP学习笔记14--IP地址 之 全局地址,私有地址

    只要明天还在,我就不会悲哀,冬雪终会悄悄融化,春雷定将滚滚而来.----<只要明天还在>,汪国真 全局地址,私有地址 , 一种为解决IP地址不足而产生的技术. 起初 ,互联网中的任何一台主 ...

  2. 小程序常用操作,if,for,跳转,弹出提示

    if <block wx:if="{{result.child_items}}"> ... </block> <block wx:else> . ...

  3. Connection to api@localhost failed. [08001] Could not create connection to d

    pycharm 换成2019之后连接数据库用户名密码数据库名字都没错,就是连接不上去,网上百度一下,试试将URL后面拼接 ?useSSL=false&serverTimezone=UTC 发现 ...

  4. gorm 批量插入数据

    使用gorm 插入数据的时候,根据官方文档可以使用Create或者FirstOrCreate(). 但是官方没有提供批量插入数据的方法. 根据github的 issue得知,我们可以通过自己拼接sql ...

  5. Java代码生成器Easy Code

    EasyCode是基于IntelliJ IDEA开发的代码生成插件,支持自定义任意模板(Java,html,js,xml).只要是与数据库相关的代码都可以通过自定义模板来生成.支持数据库类型与java ...

  6. Python中logging快速上手教程

    本文使用得日志需要导入logging模块和logging.handlers模块,即 import logging import logging.handlers ''' author = " ...

  7. charles4.0 request和response的显示设置

    点击右上角的设置按钮 点击preferences 切换到viewers,取消勾选Combine request and response,点击保存即可

  8. Java文件字符流

    1.字符编码(Character encoding)和编码集(Character set) 字符编码(Character encoding)是将字符转为字节或字节数组的过程. 字符集(Characte ...

  9. Java调用WebService方法总结(9,end)--Http方式调用WebService

    Http方式调用WebService,直接发送soap消息到服务端,然后自己解析服务端返回的结果,这种方式比较简单粗暴,也很好用:soap消息可以通过SoapUI来生成,也很方便.文中所使用到的软件版 ...

  10. iOS - WebRTC的实现原理

    再简单地介绍一下webrtc: WebRTC,名称源自网页实时通信(Web Real-Time Communication)的缩写,简而言之它是一个支持网页浏览器进行实时语音对话或视频对话的技术. 它 ...