A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

这道题让求所有不同的路径的个数,一开始还真把博主难住了,因为之前好像没有遇到过这类的问题,所以感觉好像有种无从下手的感觉。在网上找攻略之后才恍然大悟,原来这跟之前那道 Climbing Stairs 很类似,那道题是说可以每次能爬一格或两格,问到达顶部的所有不同爬法的个数。而这道题是每次可以向下走或者向右走,求到达最右下角的所有不同走法的个数。那么跟爬梯子问题一样,需要用动态规划 Dynamic Programming 来解,可以维护一个二维数组 dp,其中 dp[i][j] 表示到当前位置不同的走法的个数,然后可以得到状态转移方程为:  dp[i][j] = dp[i - 1][j] + dp[i][j - 1],这里为了节省空间,使用一维数组 dp,一行一行的刷新也可以,代码如下:

解法一:

class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> dp(n, );
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
dp[j] += dp[j - ];
}
}
return dp[n - ];
}
};

这道题其实还有另一种很数学的解法,参见网友 Code Ganker 的博客,实际相当于机器人总共走了 m + n - 2步,其中 m - 1 步向右走,n - 1 步向下走,那么总共不同的方法个数就相当于在步数里面 m - 1 和 n - 1 中较小的那个数的取法,实际上是一道组合数的问题,写出代码如下:

解法二:

class Solution {
public:
int uniquePaths(int m, int n) {
double num = , denom = ;
int small = m > n ? n : m;
for (int i = ; i <= small - ; ++i) {
num *= m + n - - i;
denom *= i;
}
return (int)(num / denom);
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/62

类似题目:

Unique Paths II

Minimum Path Sum

Dungeon Game

参考资料:

https://leetcode.com/problems/unique-paths/

https://leetcode.com/problems/unique-paths/discuss/22981/My-AC-solution-using-formula

https://leetcode.com/problems/unique-paths/discuss/22954/0ms-5-lines-DP-Solution-in-C%2B%2B-with-Explanations

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 62. Unique Paths 不同的路径的更多相关文章

  1. LeetCode 63. Unique Paths II不同路径 II (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  2. [LeetCode] 62. Unique Paths 唯一路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  3. leetcode 62. Unique Paths 、63. Unique Paths II

    62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...

  4. LeetCode 62. Unique Paths(所有不同的路径)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  5. LeetCode 62. Unique Paths不同路径 (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  6. [leetcode]62. Unique Paths 不同路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  7. [leetcode] 62 Unique Paths (Medium)

    原题链接 字母题 : unique paths Ⅱ 思路: dp[i][j]保存走到第i,j格共有几种走法. 因为只能走→或者↓,所以边界条件dp[0][j]+=dp[0][j-1] 同时容易得出递推 ...

  8. LeetCode: 62. Unique Paths(Medium)

    1. 原题链接 https://leetcode.com/problems/unique-paths/description/ 2. 题目要求 给定一个m*n的棋盘,从左上角的格子开始移动,每次只能向 ...

  9. [LeetCode] 63. Unique Paths II_ Medium tag: Dynamic Programming

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

随机推荐

  1. HDU 6148 (数位DP)

    ### HDU 6148 题目链接 ### 题目大意: 众所周知,度度熊非常喜欢数字. 它最近发明了一种新的数字:Valley Number,像山谷一样的数字. 当一个数字,从左到右依次看过去数字没有 ...

  2. vue的双向绑定原理浅析与简单实现

    很久之前看过vue的一些原理,对其中的双向绑定原理也有一定程度上的了解,只是最近才在项目上使用vue,这才决定好好了解下vue的实现原理,因此这里对vue的双向绑定原理进行浅析,并做一个简单的实现. ...

  3. Prometheus 监控K8S 资源状态对象

    Prometheus 监控K8S 资源状态对象 官方文档:https://github.com/kubernetes/kube-state-metrics kube-state-metrics是一个简 ...

  4. Zookeeper的安装与配置、使用

    Dubbo的介绍 如果表现层和服务层是不同的工程,然而表现层又要调用服务层的服务,肯定不能像之前那样,表现层和服务层在一个项目时,只需把服务层的Java类注入到表现层所需要的类中即可,但现在,表现层和 ...

  5. generator的本质是将异步的管理剥离

    generator的本质是将异步的管理剥离

  6. Python - 常规操作Excel - 第二十六天

    前言 作为一名资深程序员,通过代码熟练操作Excel是必不可少的技能,本章主要讲解Python通过openpyxl第三方库(官方文件说明)对Excel进行操作,使Excel程序化操作更为简单快捷. o ...

  7. 同时读取两个文件进行while循环

    知识点:文件对象提供了三个“读”方法: .read()..readline() 和 .readlines().每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量. 问题描述: 我们的 ...

  8. C#和Java的对比

    C#和Java的对比 C#是微软公司在2000年6月发布的一种面向对象的高级程序设计语言:Java是Sun公司在1996年1月发布的一种面向对象的.平台独立的高级程序设计语言.它们是现在最流行的面向对 ...

  9. synchronized和volatile使用

    synchronized和volatile volatile :保证内存可见性,但是不保证原子性: synchronized:同步锁,既能保证内存可见性,又能保证原子性: synchronized实现 ...

  10. Fundebug:JavaScript插件支持错误采样

    Fundebug的付费套餐主要是根据错误事件数制定的,这是因为每一个发送到我们服务器的事件,都会消耗一定的CPU.内存.磁盘以及带宽资源,尤其当错误事件数非常大时,会对我们的计算资源造成很大压力. 如 ...