A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

这道题让求所有不同的路径的个数,一开始还真把博主难住了,因为之前好像没有遇到过这类的问题,所以感觉好像有种无从下手的感觉。在网上找攻略之后才恍然大悟,原来这跟之前那道 Climbing Stairs 很类似,那道题是说可以每次能爬一格或两格,问到达顶部的所有不同爬法的个数。而这道题是每次可以向下走或者向右走,求到达最右下角的所有不同走法的个数。那么跟爬梯子问题一样,需要用动态规划 Dynamic Programming 来解,可以维护一个二维数组 dp,其中 dp[i][j] 表示到当前位置不同的走法的个数,然后可以得到状态转移方程为:  dp[i][j] = dp[i - 1][j] + dp[i][j - 1],这里为了节省空间,使用一维数组 dp,一行一行的刷新也可以,代码如下:

解法一:

class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> dp(n, );
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
dp[j] += dp[j - ];
}
}
return dp[n - ];
}
};

这道题其实还有另一种很数学的解法,参见网友 Code Ganker 的博客,实际相当于机器人总共走了 m + n - 2步,其中 m - 1 步向右走,n - 1 步向下走,那么总共不同的方法个数就相当于在步数里面 m - 1 和 n - 1 中较小的那个数的取法,实际上是一道组合数的问题,写出代码如下:

解法二:

class Solution {
public:
int uniquePaths(int m, int n) {
double num = , denom = ;
int small = m > n ? n : m;
for (int i = ; i <= small - ; ++i) {
num *= m + n - - i;
denom *= i;
}
return (int)(num / denom);
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/62

类似题目:

Unique Paths II

Minimum Path Sum

Dungeon Game

参考资料:

https://leetcode.com/problems/unique-paths/

https://leetcode.com/problems/unique-paths/discuss/22981/My-AC-solution-using-formula

https://leetcode.com/problems/unique-paths/discuss/22954/0ms-5-lines-DP-Solution-in-C%2B%2B-with-Explanations

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 62. Unique Paths 不同的路径的更多相关文章

  1. LeetCode 63. Unique Paths II不同路径 II (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  2. [LeetCode] 62. Unique Paths 唯一路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  3. leetcode 62. Unique Paths 、63. Unique Paths II

    62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...

  4. LeetCode 62. Unique Paths(所有不同的路径)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  5. LeetCode 62. Unique Paths不同路径 (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  6. [leetcode]62. Unique Paths 不同路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  7. [leetcode] 62 Unique Paths (Medium)

    原题链接 字母题 : unique paths Ⅱ 思路: dp[i][j]保存走到第i,j格共有几种走法. 因为只能走→或者↓,所以边界条件dp[0][j]+=dp[0][j-1] 同时容易得出递推 ...

  8. LeetCode: 62. Unique Paths(Medium)

    1. 原题链接 https://leetcode.com/problems/unique-paths/description/ 2. 题目要求 给定一个m*n的棋盘,从左上角的格子开始移动,每次只能向 ...

  9. [LeetCode] 63. Unique Paths II_ Medium tag: Dynamic Programming

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

随机推荐

  1. CSS选择器[attribute | = value] 和 [attribute ^ = value]的区别

    前言 首先你需要知道[attribute | = value] 和 [attribute ^ = value] 分别是什么? ①:[attribute | = value] ②:[attribute ...

  2. .net core EF Core 视图的应用

    由之前的一篇文章<.net core Entity Framework 与 EF Core>我们都已经知道 EF Core 增加了许多特性,并且性能上也有了很大的提升. 但是EF Core ...

  3. Prometheus K8S中部署Alertmanager

    Prometheus K8S中部署Alertmanager 设置告警和通知的主要步骤如下:一.部署Alertmanager二.配置Prometheus与Alertmanager通信三.配置告警 1. ...

  4. IDA分析时添加新的C语言结构体

    View - Open Subviews - Local Type - INSERT键 - 输入新结构体 - 右击"Synchornize to idb" 之后再分析处按 T 就可 ...

  5. 禁止直接通过IP访问--->nginx

    在nginx.conf 中添加 server{ listen 80 default_server; return 501; } 注: nginx加载include是按顺序,如果是文件夹,就是文件顺序, ...

  6. Python【day 11】闭包

    闭包 1.闭包的概念: 嵌套函数中,父级函数的变量,在子集函数中用到了(访问.修改.返回),那么这个变量就被保护起来了 只有自己可以修改,父级函数()()就是闭包函数 2.闭包的特点: 1.常驻内存 ...

  7. Vue内置组件[回顾]

    1.动态组件 在某些场景,往往需要我们动态切换页面部分区域的视图,这个时候内置组件component就显得尤为重要. component接收一个名为is的属性,is的值应为父组件中注册过的组件的名称, ...

  8. SPFA板子

    #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; ; vector<pair<int, ...

  9. EntityFrameworkCore(efcore)在与 MySQL 连接使用中的问题

    请直接使用第三方驱动: Pomelo.EntityFrameworkCore.MySql(https://github.com/PomeloFoundation/Pomelo.EntityFramew ...

  10. jenkins构建前端Vue

    最近做项目,使用了前后端分离,后端代码是用maven构建的,前端之前没有了解过, 和开发稍微沟通了一下,开发提供了非常有用的信息, 只要搜索关键字 jenkins 构建 Vue,按照步骤操作,果然编译 ...