洛谷 CF1193A Amusement Park

洛谷传送门

题目翻译

有一个游乐场有一个好玩的项目:一些有向滑梯可以将游客从一个景点快速、刺激地传送到另一个景点。现在,你要帮游乐场老板来规划一个造滑梯的项目。

滑梯只能从海拔高的地方向海拔低的地方滑。老板原定的方案已经给出,你的工作是反转某些滑梯的方向(可以反转全部的或一个都不转),并为每个景点指定一个海拔高度,使得每一个滑梯都能下山,那么这个方案是合法的。其成本是要反转的滑梯的总数。对于老板给定的方案,你需要算出所有合法方案的成本总和。由于这个数可能很大,所以输出时需将其对\(998,244,353\)取模。

输入格式

第一行包括两个用空格隔开的整数\(n,m(1\le n\le 18,0\le m\le n(n-1)/2)\)表示景点和滑梯的数量。景点从\(1-n\)编号。

之后的\(m\)行,第\(i\)行包括两个整数\(a_i,b_i(1\le a_i,b_i\le n)\),表示从\(a_i\)到\(b_i\)有一条滑梯。数据保证无自环,无重边,无双向边。

输出格式

输出一行,表示答案。

子任务:

子任务1:(7分)\(n\le 3\)。

子任务2:(12分)\(n\le 6\)。

子任务3:(23分)\(n\le 10\)。

子任务4:(21分)\(n\le 15\)。

子任务5:(37分)无附加条件。

样例说明

在第一个样例中,有两种方案:

  • 不反转任何滑梯,花费为0.

  • 反转滑梯,花费为1.

因为所有方案都是合法的,所以答案为1.在第二个样例中,有8种方案如下:(括号中为花费)

  • \(1\to 2,2\to 3,1\to 3(0)\)
  • \(1\to 2,2\to 3,3\to 1(1)\)
  • \(1\to 2,3\to 2,1\to 3(1)\)
  • \(1\to 2,3\to 2,3\to 1(2)\)
  • \(2\to 1,2\to 3,1\to 3(1)\)
  • \(2\to 1,2\to 3,3\to 1(2)\)
  • \(2\to 1,3\to 2,1\to 3 (2)\)
  • \(2\to 1,3\to 2,3\to 1(3)\)

第二种方案是不合法的,因为会出现了一个从1到1的回路,制造了1点必须比自己高的悖论。同样地,第七种方案也是不合法的,所以答案是\(0+1+2+1+2+3=9\)。

题解:

作为本题第一个提交翻译的人(也不知道现在过没过)和第二个AC的人,先抢着发一下第一篇题解。

乍一看题面(因为是我翻译的)感觉题目爆难(事实上的确挺难的)。但是实际上我们不需要确定这张图的海拔高度到底是多少。我们只需要保证这张图没有环即可(由样例说明可以得出,环是绝对不合法的)。同理,我们可以证明,只要这个图不包含环,那么这个图就绝对是合法的。

那么题意就变成了:一张有向图,随便改边的方向,最终的答案是使图无环的贡献之和。

但是蒟蒻太弱了,自己只YY到了上面的步骤...

我们可以这样去想,对于一张图,我们可以把它拆成若干个DAG(有向无环图),这些DAG以点集的形式出现。确定一个DAG为初始集合。那么我们可以这样考虑:我们把剩下的DAG点集分批次加入到这个初始集合中,但是,DAG+DAG不一定还是DAG,所以我们在加入的时候进行判断。显然,假如我们新加入的点的出度或入度全部为0,那么这个加入后的原始集合就会依然合法。

注意这个关系是!为什么呢?以为我们只要保证这些点的出度或者入度都为0,我们就可以保证:我们在链接的时候只连它们中度为0的那些,而那些度不为0的就无论如何也不会和原图构成环。

所以我们考虑采用DP来解决方案数的问题:设DP[a]为集合a为DAG的方案总数。

但是我们会出现:一个合法的小集合,我们既可以把它分多次依次加入,也可以把它一次性加入。

所以我们还需要利用容斥原理。

思路及代码借鉴自@zryabc's blog。

#include<bits/stdc++.h>
#define ll long long
#define check(x,y) (((x)>>((y)-1))&1)
using namespace std;
const int mod=998244353;
const int maxn=1<<18|5;
int n,m;
int u[405],v[405];
ll dp[maxn];
int cnt[maxn];
bool mark[maxn];
void add(ll &x,ll y)
{
x+=y;
if(x>=mod)
x-=mod;
if(x<0)
x+=mod;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&u[i],&v[i]);
cnt[0]=-1;dp[0]=1;
for(int i=1;i<1<<n;i++)
cnt[i]=-cnt[i&(i-1)];
for(int i=1;i<1<<n;i++)
for(int j=1;j<=m;j++)
if(check(i,u[j]) && check(i,v[j]))
{
mark[i]=1;
break;
}
for(int i=1;i<1<<n;i++)
for(int j=i;j>=1;j=(j-1)&i)
if(!mark[j])
add(dp[i],dp[i^j]*cnt[j]);
printf("%lld\n",dp[(1<<n)-1]*m%mod*499122177%mod);
return 0;
}

CF1193A Amusement Park的更多相关文章

  1. Timus 1796. Amusement Park 聪明题

    On a sunny Sunday, a group of children headed by their teacher came to an amusement park. Aunt Frosy ...

  2. URAL 1796. Amusement Park (math)

    1796. Amusement Park Time limit: 1.0 second Memory limit: 64 MB On a sunny Sunday, a group of childr ...

  3. (一)常用的CSS命名规则

    头:header 内容:content/container 尾:footer 导航:nav 侧栏:sidebar 栏目:column 页面外围控制整体布局宽度:wrapper 左右中:left rig ...

  4. POJ3967Ideal Path[反向bfs 层次图]

    Ideal Path Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 1754   Accepted: 240 Descri ...

  5. News common vocabulary

    英语新闻常用词汇与短语 经济篇 accumulated deficit 累计赤字 active trade balance 贸易顺差 adverse trade balance 贸易逆差 aid 援助 ...

  6. [codeforces 241]C. Mirror Box

    [codeforces 241]C. Mirror Box 试题描述 Mirror Box is a name of a popular game in the Iranian National Am ...

  7. hdu 4444 Walk (离散化+建图+bfs+三维判重 好题)

    Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  8. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  9. UVA1599-Ideal Path(BFS进阶)

    Problem UVA1599-Ideal Path Time Limit: 3000 mSec Problem Description New labyrinth attraction is ope ...

随机推荐

  1. Linux 目录详细介绍

    [常见目录说明] 目录 /bin 存放二进制可执行文件(ls,cat,mkdir等),常用命令一般都在这里. /etc 存放系统管理和配置文件 /home 存放所有用户文件的根目录,是用户主目录的基点 ...

  2. Codeforces Round 589 (Div. 2) 题解

    Is that a kind of fetishism? No, he is objectively a god. 见识了一把 Mcdic 究竟出题有多神. (虽然感觉还是吹过头了) 开了场 Virt ...

  3. 【转】np.random.random()函数 参数用法以及numpy.random系列函数大全

    转自:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((1000, 20) ...

  4. N!(hdu1042)

    N! Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N! Input One N in one line, process ...

  5. Delta-wave HDU - 1030

    Delta-wave HDU - 1030 A triangle field is numbered with successive integers in the way shown on the ...

  6. C# 5.0 新特性之异步方法(AM)

    Ø  前言 C# Asynchronous Programming(异步编程)有几种实现方式,其中 Asynchronous Method(异步方法)就是其中的一种.异步方法是 C#5.0 才有的新特 ...

  7. 打开IDEA的更新选项,如何打开IDEA更新弹窗

    如何让IDEA的更新弹窗重新出现,打开IDEA的更新选项 IDEA  update的时候,会提示一个更新的弹框选择框如下图所示 在最下方有个Do not show this dialog in the ...

  8. IDEA帮助文档快捷键ctrl+q 查看类 方法 变量 帮助文档 注释 快捷键

    IDEA查看类 成员变量  局部变量注释快捷键,Ctrl +Q 查看帮助文档 实际项目中,通常一个类中的代码都不少,而且有很多的变量 那么如何快速知道这个变量的一些信息,比如类型,定义? 比如在第50 ...

  9. 【mybatis】mybatis传参的几种方式

    参考地址: https://my.oschina.net/liuzelin/blog/2966633

  10. Enum.GetValues(),返回System.Array的一个实例

    Array enumData = Enum.GetValues(e.GetType()); Console.WriteLine("This enum has {0} members.&quo ...