一、JDBC数据源案例

1、概述

Spark SQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用Spark Core提供的各种算子进行处理。

这里有一个经验之谈,实际上用Spark SQL处理JDBC中的数据是非常有用的。比如说,你的MySQL业务数据库中,有大量的数据,比如1000万,然后,你现在需要编写一个程序,
对线上的脏数据某种复杂业务逻辑的处理,甚至复杂到可能涉及到要用Spark SQL反复查询Hive中的数据,来进行关联处理。 那么此时,用Spark SQL来通过JDBC数据源,加载MySQL中的数据,然后通过各种算子进行处理,是最好的选择。因为Spark是分布式的计算框架,对于1000万数据,肯定是分布式处理的。
而如果你自己手工编写一个Java程序,那么不好意思,你只能分批次处理了,先处理2万条,再处理2万条,可能运行完你的Java程序,已经是几天以后的事情了。 Java版本
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "students");
DataFrame jdbcDF = sqlContext.read().format("jdbc"). options(options).load(); Scala版本
val jdbcDF = sqlContext.read.format("jdbc").options(
Map("url" -> "jdbc:mysql://spark1:3306/testdb",
"dbtable" -> "students")).load() 案例:查询分数大于80分的学生信息

#授权表权限
grant all on testdb.* to ''@'spark1' with grant option;
flush privileges;

2、准备数据

mysql> create database testdb;
mysql> use testdb; mysql> create table student_infos(name varchar(20), age integer); mysql> create table student_scores(name varchar(20), score integer); mysql> insert into student_infos values('leo', 18),('marry', 17),('jack', 19); mysql> insert into student_scores values('leo', 88),('marry', 99),('jack', 60); mysql> create table good_student_infos(name varchar(20), age integer, score integer);

3、java案例实现

package cn.spark.study.sql;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType; import scala.Tuple2; /**
* JDBC数据源
* @author Administrator
*
*/
public class JDBCDataSource { public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("JDBCDataSource");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc); // 总结一下
// jdbc数据源
// 首先,是通过SQLContext的read系列方法,将mysql中的数据加载为DataFrame
// 然后可以将DataFrame转换为RDD,使用Spark Core提供的各种算子进行操作
// 最后可以将得到的数据结果,通过foreach()算子,写入mysql、hbase、redis等等db / cache中 // 分别将mysql中两张表的数据加载为DataFrame
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "student_infos"); DataFrame studentInfosDF = sqlContext.read().format("jdbc")
.options(options).load(); options.put("dbtable", "student_scores");
DataFrame studentScoresDF = sqlContext.read().format("jdbc")
.options(options).load(); // 将两个DataFrame转换为JavaPairRDD,执行join操作
JavaPairRDD<String, Tuple2<Integer, Integer>> studentsRDD = studentInfosDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(row.getString(0),
Integer.valueOf(String.valueOf(row.get(1))));
} })
.join(studentScoresDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(String.valueOf(row.get(0)),
Integer.valueOf(String.valueOf(row.get(1))));
} })); // 将JavaPairRDD转换为JavaRDD<Row>
JavaRDD<Row> studentRowsRDD = studentsRDD.map( new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() { private static final long serialVersionUID = 1L; @Override
public Row call(
Tuple2<String, Tuple2<Integer, Integer>> tuple)
throws Exception {
return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
} }); // 过滤出分数大于80分的数据
JavaRDD<Row> filteredStudentRowsRDD = studentRowsRDD.filter( new Function<Row, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Row row) throws Exception {
if(row.getInt(2) > 80) {
return true;
}
return false;
} }); // 转换为DataFrame
List<StructField> structFields = new ArrayList<StructField>();
structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));
structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));
StructType structType = DataTypes.createStructType(structFields); DataFrame studentsDF = sqlContext.createDataFrame(filteredStudentRowsRDD, structType); Row[] rows = studentsDF.collect();
for(Row row : rows) {
System.out.println(row);
} // 将DataFrame中的数据保存到mysql表中
// 这种方式是在企业里很常用的,有可能是插入mysql、有可能是插入hbase,还有可能是插入redis缓存
studentsDF.javaRDD().foreach(new VoidFunction<Row>() { private static final long serialVersionUID = 1L; @Override
public void call(Row row) throws Exception {
String sql = "insert into good_student_infos values("
+ "'" + String.valueOf(row.getString(0)) + "',"
+ Integer.valueOf(String.valueOf(row.get(1))) + ","
+ Integer.valueOf(String.valueOf(row.get(2))) + ")"; Class.forName("com.mysql.jdbc.Driver"); Connection conn = null;
Statement stmt = null;
try {
conn = DriverManager.getConnection(
"jdbc:mysql://spark1:3306/testdb", "", "");
stmt = conn.createStatement();
stmt.executeUpdate(sql);
} catch (Exception e) {
e.printStackTrace();
} finally {
if(stmt != null) {
stmt.close();
}
if(conn != null) {
conn.close();
}
}
} }); sc.close();
} }

42、JDBC数据源案例的更多相关文章

  1. Tomcat中使用JNDI加载JDBC数据源

    以前写JDBC的时候总是手工写一个类,用硬代码写上className.url.用户名和密码什么的,然后通过DriverManager获取到Connection.那样写是很方便,但是如果想更改的话,需要 ...

  2. spring中配置jdbc数据源

    1.加入jdbc驱动器包,mysql-connector-java.jar 2.加入commons-dbcp.jar配置数据源 3.在classpath下新建文件jdbc.properties,配置j ...

  3. weblogic配置jdbc数据源

    weblogic配置jdbc数据源的过程 方法/步骤   启动weblogic 管理服务器,使用管理用户登录weblogic管理控制台   打开管理控制台后,在左侧的树形域结构中,选择服务->数 ...

  4. JDBC数据源 使用JNDI连接池实现数据库的连接

    0.引言 许多Web应用程序需要通过JDBC驱动程序访问数据库,以支持该应用程序所需的功能.Java EE平台规范要求Java EE应用程序服务器为此目的提供一个DataSource实现(即,用于JD ...

  5. JDBC数据源连接池(4)---自定义数据源连接池

    [续上文<JDBC数据源连接池(3)---Tomcat集成DBCP>] 我们已经 了解了DBCP,C3P0,以及Tomcat内置的数据源连接池,那么,这些数据源连接池是如何实现的呢?为了究 ...

  6. JDBC数据源连接池(3)---Tomcat集成DBCP

    此文续<JDBC数据源连接池(2)---C3P0>. Apache Tomcat作为一款JavaWeb服务器,内置了DBCP数据源连接池.在使用中,只要进行相应配置即可. 首先,确保Web ...

  7. JDBC数据源连接池(2)---C3P0

    我们接着<JDBC数据源连接池(1)---DBCP>继续介绍数据源连接池. 首先,在Web项目的WebContent--->WEB-INF--->lib文件夹中添加C3P0的j ...

  8. JDBC数据源(DataSource)数据源技术是Java操作数据库的一个很关键技术,流行的持久化框架都离不开数据源的应用。

    JDBC数据源(DataSource)的简单实现   数据源技术是Java操作数据库的一个很关键技术,流行的持久化框架都离不开数据源的应用. 2.数据源提供了一种简单获取数据库连接的方式,并能在内部通 ...

  9. eclipse下jdbc数据源与连接池的配置及功能简介

    今天在做四则运算网页版的时候遇到了一个困惑,由于需要把每个产生的式子存进 数据库,所以就需要很多次重复的加载驱动,建立连接等操作,这样一方面写程序不方便,加大了程序量,另一方面,还有导致数据库的性能急 ...

随机推荐

  1. git学习笔记 ---版本退回

    我们已经成功地添加并提交了一个readme.txt文件,现在,是时候继续工作了,于是,我们继续修改readme.txt文件,改成如下内容: Git is a distributed version c ...

  2. 聊一聊,React开发中应该规避的点

    原文永久链接: https://github.com/AttemptWeb..... 下面说到的React开发中注意的问题,部分是自己遇到过的点,部分是收集的,也算是React代码优化部分,这次做一个 ...

  3. kubernetes第八章--NFS PersistentVolume

  4. 解决SecureCRT 中文乱码??

    在linux服务器上搭建solr,用的是SecureCRT  连接linux服务器,发现不能输入中文,配置文件中的中文也是乱码:先以为是SecureCRT工具编码的问题,把编码改成utf-8之后发现还 ...

  5. js合并多个array

    Array.prototype.concat.call(array1, array2, array3, ...)

  6. Python定义点击右上角关闭按钮事件

    Python定义点击右上角关闭按钮事件(Python defines the event of clicking the close button in the upper right corner) ...

  7. 安卓MediaPlayer框架之Binder机制

    Binder简介 Binder是Android系统进程间通信的主要方式之一. 1.在ASOP中,Binder使用传统的C/S通信方式:即一个进程作为服务端提供诸如视音频解封装,解码渲染,地址查询等各种 ...

  8. Vue props用法详解

    Vue props用法详解 组件接受的选项之一 props 是 Vue 中非常重要的一个选项.父子组件的关系可以总结为: props down, events up 父组件通过 props 向下传递数 ...

  9. Linux命令——dumpe2fs

    参考:Linux磁盘管理——Ext2文件系统 简介 dumpe2fs用于查询 Ext 家族 superblock以及GDT(Group Descriptor Table,块组描述符表) 信息. 用法 ...

  10. IAR常用快捷键和使用小技巧

    1.复制和粘贴几行的部分代码 需求:有时候我们需要复制几行代码的后半部分,不需要复制前半部分.方法:按住Alt键,再用鼠标拖动就可以复制和粘贴后半部分 2.复制一行 复制一行的时候,我们一般是从最后开 ...