UOJ

思路

(以下思路是口胡,但正确性大概没有问题。)

刚学min_25筛的时候被麦老大劝来做这题?

结果发现这题是个垃圾二合一??

简单推一下式子可以得到答案就是这个:

\[\sum_{T=1}^m (f*\mu)(T)\sum_{\{a_i\le m/T \}} \prod_i [a_{x_i}\le a_{y_i}]
\]

其中\(f(n)=(\sigma_0(n^3))^3\)。

通过手玩可以得到\((f*\mu)(p^c)=81c^2-27c+9,c\ne 0\),于是可以min_25求前缀和。

现在问题转化为:对于一个给定的上界,求满足限制的\(\{a_n\}\)有几个。

先缩点。考虑枚举\(\{a_n\}\)中不同的\(a\)有几个,然后状压DP:设\(f_S\)表示从小到大放,当前已经放了\(S\)的方案数。我们做\(n\)次转移,做完\(i\)次之后\(f_U\)就是至多\(i\)个不同的\(a\)的方案数。

转移可以枚举子集,但显然会TLE。考虑一个点能被放上去当且仅当小于它的全都放上去了,于是有一个根据拓扑序转移的方法:

f[0]=1;
rep(i,1,n)
{
repd(j,n,1)
{
int s=((1<<n)-1)^mp[j]^(1<<j-1);
for(int k=s; ; k=(k-1)&s)
{
f[k^mp[j]^(1<<j-1)]+=f[k^mp[j]];
if(!k) break;
}
}
cur[i]=f[(1<<n)-1];
}

(麦老大nb!)

其中\(n\)的拓扑序最大,\(mp_j\)记录\(j\)直接连向的点。

最后对\(cur\)二项式反演一下就没了。

代码

咕咕咕

UOJ426. 【集训队作业2018】石像 [状压DP,min_25筛]的更多相关文章

  1. 【UOJ448】【集训队作业2018】人类的本质 min_25筛

    题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i, ...

  2. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  3. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  4. 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp

    2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp [P ...

  5. [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

  6. 【XSY3042】石像 拓扑排序 状压DP 洲阁筛

    题目大意 有 \(n\) 个整数 \(a_1,a_2,\ldots,a_n\),每个数的范围是 \([1,m]\).还有 \(k\) 个限制,每个限制 \(x_i,y_i\) 表示 \(a_{x_i} ...

  7. [BZOJ5248] 2018九省联考 D1T1 一双木棋 | 博弈论 状压DP

    题面 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子 ...

  8. 2018.10.27 洛谷P2915奶牛混合起来Mixed Up Cows(状压dp)

    传送门 状压dp入门题. 按照题意建一个图. 要求的就是合法的链的总数. 直接f[i][j]f[i][j]f[i][j]表示当前状态为jjj,下一位要跟iii连起来的方案数. 然后从没被选并且跟iii ...

  9. 2018.10.24 bzoj2064: 分裂(状压dp)

    传送门 状压dp好题. 考虑对于两个给出的集合. 如果没有两个元素和相等的子集,那么只能全部拼起来之后再拆开,一共需要n1+n2−2n1+n2-2n1+n2−2. 如果有呢? 那么对于没有的就是子问题 ...

随机推荐

  1. 系统开启UAC情形下开机自启动程序如何以管理员权限启动

    系统开启UAC情形下开机自启动程序如何以管理员权限启动 题记:本文阐述的是在Windows系统开启UAC的情况下,开机自启动程序需要以管理员权限启动, 系统弹出UAC对话框,用户同意的情形下启动程序 ...

  2. Java初学心得(二)

    数组概述 一,数组基本操作 ①一维数组的创建:数组元素类型[] 数组名字=new 数组类型[数组元素个数] 例:int []arr=new int[5];数组长度为5 ②初始化一维数组:第一种:int ...

  3. Python之TensorFlow的卷积神经网络-5

    一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...

  4. Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient报错,问题排查

    背景 最近在整合pyspark与hive,新安装spark-2.3.3以客户端的方式访问hive数据,运行方式使用spark on yarn,但是在配置spark读取hive数据的时候,这里直接把hi ...

  5. Expanded, SingleChildScrollView, CustomScrollView, container, height, width

    SingleChildScrollView, CustomScrollView, container, init: double.inifinity. then use Expanded to con ...

  6. elasticsearch授权访问

    1.search guard插件 https://www.cnblogs.com/shifu204/p/6376683.html 2.Elasticsearch-http-basic 不支持es5,忽 ...

  7. LifeGame

    LifeGame 用例说明&用例图 用例名: 设置细胞颜色 说明 用户可以根据自己的喜好来设置细胞的颜色 主事件流 在菜单出点击需要的颜色游戏检测到菜单的返回的颜色更改细胞的颜色,最后显示出来 ...

  8. jenkens docker启动

    docker run \ -u root \ --rm \ -d \ -p 8080:8080 \ -p 50000:50000 \ -v jenkins-data:/var/jenkins_home ...

  9. c# IComparable与IComparer接口

  10. php 执行大量sql语句 MySQL server has gone away

    php 设置超时时间单位秒 set_time_limit(3600);   php 设置内存限制ini_set('memory_limit', '1024M');   mysql服务端接收到的包的大小 ...