UOJ

思路

(以下思路是口胡,但正确性大概没有问题。)

刚学min_25筛的时候被麦老大劝来做这题?

结果发现这题是个垃圾二合一??

简单推一下式子可以得到答案就是这个:

\[\sum_{T=1}^m (f*\mu)(T)\sum_{\{a_i\le m/T \}} \prod_i [a_{x_i}\le a_{y_i}]
\]

其中\(f(n)=(\sigma_0(n^3))^3\)。

通过手玩可以得到\((f*\mu)(p^c)=81c^2-27c+9,c\ne 0\),于是可以min_25求前缀和。

现在问题转化为:对于一个给定的上界,求满足限制的\(\{a_n\}\)有几个。

先缩点。考虑枚举\(\{a_n\}\)中不同的\(a\)有几个,然后状压DP:设\(f_S\)表示从小到大放,当前已经放了\(S\)的方案数。我们做\(n\)次转移,做完\(i\)次之后\(f_U\)就是至多\(i\)个不同的\(a\)的方案数。

转移可以枚举子集,但显然会TLE。考虑一个点能被放上去当且仅当小于它的全都放上去了,于是有一个根据拓扑序转移的方法:

f[0]=1;
rep(i,1,n)
{
repd(j,n,1)
{
int s=((1<<n)-1)^mp[j]^(1<<j-1);
for(int k=s; ; k=(k-1)&s)
{
f[k^mp[j]^(1<<j-1)]+=f[k^mp[j]];
if(!k) break;
}
}
cur[i]=f[(1<<n)-1];
}

(麦老大nb!)

其中\(n\)的拓扑序最大,\(mp_j\)记录\(j\)直接连向的点。

最后对\(cur\)二项式反演一下就没了。

代码

咕咕咕

UOJ426. 【集训队作业2018】石像 [状压DP,min_25筛]的更多相关文章

  1. 【UOJ448】【集训队作业2018】人类的本质 min_25筛

    题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i, ...

  2. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  3. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  4. 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp

    2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)-E. Explosion Exploit-概率+状压dp [P ...

  5. [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

  6. 【XSY3042】石像 拓扑排序 状压DP 洲阁筛

    题目大意 有 \(n\) 个整数 \(a_1,a_2,\ldots,a_n\),每个数的范围是 \([1,m]\).还有 \(k\) 个限制,每个限制 \(x_i,y_i\) 表示 \(a_{x_i} ...

  7. [BZOJ5248] 2018九省联考 D1T1 一双木棋 | 博弈论 状压DP

    题面 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子 ...

  8. 2018.10.27 洛谷P2915奶牛混合起来Mixed Up Cows(状压dp)

    传送门 状压dp入门题. 按照题意建一个图. 要求的就是合法的链的总数. 直接f[i][j]f[i][j]f[i][j]表示当前状态为jjj,下一位要跟iii连起来的方案数. 然后从没被选并且跟iii ...

  9. 2018.10.24 bzoj2064: 分裂(状压dp)

    传送门 状压dp好题. 考虑对于两个给出的集合. 如果没有两个元素和相等的子集,那么只能全部拼起来之后再拆开,一共需要n1+n2−2n1+n2-2n1+n2−2. 如果有呢? 那么对于没有的就是子问题 ...

随机推荐

  1. Unity的学习笔记(UGUI文本逐个字输出)

    之前在网上找过各种的逐个输出字,我可能理解能力不好,照着代码复制没有能使用成功,于是自己研究了很多网上说的思路,各种改良出了一个能用的,写完自己测试,觉得还真好用,于是记录下来 用法:将用代码组件挂上 ...

  2. Steam之两个list间交集、并集、差集

    public static void main(String[] args) { List<String> list1 = new ArrayList(); list1.add(" ...

  3. text-overflow 全兼容

    text-overflow 全兼容 text-overflow 这个CSS属性用于设置或检索是否使用一个省略标记(...)标示对象内文本的溢出.比起在后台用程序截断文本再附上省略标记的做法,用CSS来 ...

  4. npm/svn 命令

    npm npm config set registry https://registry.npm.taobao.org npm config list svn + 清除失败的事务 - cmd管理员运行 ...

  5. 仿EXCEL插件,智表ZCELL产品V1.6 版本发布,增加自定义事件功能

    详细请移步 智表(ZCELL)官网www.zcell.net 更新说明  这次更新主要应用户要求,主要解决了单元格值变化时事件的支持,并新增了按单元格名操作的相关API,欢迎大家体验使用. 本次版本更 ...

  6. FPM-OVP增强实例-银行账户

    本文是基于NWBC银行账户信息进行增强,相关过程如下: 1.定位需要增强的界面 首先登陆SAP-GUI(尽量EN登陆,ZH可能乱码),输入TCODE:NWBC跳转到浏览器界面,新建银行账户: 注意上图 ...

  7. 小米cc9和vivo z5 对比

    (一)大致对比 1.小米 cc9(6GB+128GB.  1899元. 白色恋人(白色)) https://item.mi.com/product/10000163.html 2.vivo Z5 (6 ...

  8. net 与或非

    && op1 && op2 当op1和op2都是true时,返回true :如果op1的值是false,则不运算右边的操作数 || op1 || op2 当op1和op ...

  9. Android笔记(四十八) Android中的资源访问——SDCard

    访问存储在SD卡中的文件 使用 Environment.getExternalStorageState(); 判断是否存在内存卡 使用 Environment.getExternalStorageDi ...

  10. Bash基础——减号-

    参考:Bash基础——pipe pipe命令在 bash 的连续的处理程序中相当重要.在pipe命令当中,常常会使用到前一个命令的 stdout 作为这次的 stdin , 某些命令需要用到文件名 ( ...