原题传送门

先考虑部分分做法:

subtask1:

暴力\(O(nm)\)枚举,跑最短路

subtask2:

吧一行的点压到vector中并排序,二分查找每一个弹跳装置珂以到达的城市,跑最短路

subtask3:

看见是一个链,自然而然的可以想到线段树优化建图,跑最短路

100pts

上面是72pts的暴力做法,其中subtask3的做法给了我们了一些提示,这题要用数据结构优化建图:

在横轴上开一颗线段树,线段树每个节点上是一个存pair的set,存的是\([l,r]\)区间内有第\(id\)个点(\(px[id] \in [l,r]\)),这个点的纵坐标是\(py[id]\)(pair要把纵坐标放前面)

类似线段树优化建图,我们要创建一些虚拟节点:对于第\(i\)个弹跳装置,我们创建一个编号为\(i+n\)的虚拟点,且到虚拟点的距离为所用时间\(T[i]\)

我们从\(1\)号点跑最短路。假如现在对顶是\(x\)号节点,当\(x \leq n\)时,我们更新起点为\(x\)的弹跳装置的虚拟点的dis,并扔进堆;否则就在线段树上先找到\([L[x-n],R[x-n]]\)这个区间(\(x-n\)就是该虚拟点所对应弹跳装置的编号),在这个区间所含的线段树节点上二分出\(D[x-n] \leq py[id] \leq U[x-n]\)中的节点,尝试更新dis,如果成功加入队列,不管成不成功,都从set中删除(根据dij的特性)。

这样最后输出dis[2~n]就行了

这个算法的复杂度是\(O((n+m)\log(n+m)+n\log^2 n)\),常数略(da)大(dao)一(mei)点(jiu)

(\((n+m)\log(n+m)\)是\(n+m\)个点dij的复杂度,\(n\log^2 n\)是\(n\)个节点,每个拆成\(\log n\)个,在set中insert,lowerbound,erase的复杂度)

#include <bits/stdc++.h>
#define N 70005
#define M 150005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
int n,m,w,h;
int px[N],py[N];
int P[M],T[M],L[M],R[M],D[M],U[M];
set<pair<int,int> > s[N<<2];
vector<int> nv[N];
struct node{
int dis,pos;
bool operator < (const node &x) const{
return x.dis<dis;
}
};
priority_queue<node> q;
int dis[N+M],vis[N+M];
inline void modify(register int x,register int l,register int r,register int id)
{
s[x].insert(make_pair(py[id],id));
if(l==r)
return;
int mid=l+r>>1;
if(px[id]<=mid)
modify(x<<1,l,mid,id);
else
modify(x<<1|1,mid+1,r,id);
}
inline void change(register int x,register int l,register int r,register int id)
{
if(L[id]<=l&&r<=R[id])
{
set<pair<int,int> >::iterator it;
while(19260817)
{
it=s[x].lower_bound(make_pair(D[id],-1));
if(it==s[x].end()||it->first>U[id])
break;
int to=it->second;
if(dis[to]>dis[id+n])
{
dis[to]=dis[id+n];
q.push((node){dis[to],to});
}
s[x].erase(it);
}
return;
}
int mid=l+r>>1;
if(L[id]<=mid)
change(x<<1,l,mid,id);
if(R[id]>mid)
change(x<<1|1,mid+1,r,id);
}
int main()
{
n=read(),m=read(),w=read(),h=read();
for(register int i=1;i<=n;++i)
{
px[i]=read(),py[i]=read();
if(i!=1)
modify(1,1,w,i);
}
for(register int i=1;i<=m;++i)
{
P[i]=read(),T[i]=read(),L[i]=read(),R[i]=read(),D[i]=read(),U[i]=read();
nv[P[i]].push_back(i+n);
}
for(register int i=1;i<=n;++i)
dis[i]=1926081700,vis[i]=0;
dis[1]=0;
q.push((node){0,1});
while(!q.empty())
{
node tmp=q.top();
q.pop();
int x=tmp.pos;
if(vis[x])
continue;
vis[x]=1;
if(x<=n)
{
for(register int i=0;i<nv[x].size();++i)
{
int y=nv[x][i];
dis[y]=dis[x]+T[y-n];
q.push((node){dis[y],y});
}
}
else
change(1,1,w,x-n);
}
for(register int i=2;i<=n;++i)
write(dis[i]),puts("");
return 0;
}

【题解】Luogu P5471 [NOI2019]弹跳的更多相关文章

  1. luogu P5471 [NOI2019]弹跳

    luogu 因为是一个点向矩形区域连边,所以可以二维数据结构优化连边,但是会MLE.关于维护矩形的数据结构还有\(KD-Tree\),所以考虑\(KDT\)优化连边,空间复杂度\(m\sqrt n\) ...

  2. 洛谷 P5471 - [NOI2019] 弹跳(二维线段树优化建图+堆优化存边)

    题面传送门 一道非常有意思的题(大概可以这么形容?) 首先看到这类一个点想一个区域内连边的题目可以很自然地想到线段树优化建图,只不过这道题是二维的,因此需要使用二维线段树优化建图,具体来说,我们外层开 ...

  3. luogu 5471 [NOI2019]弹跳 KDtree + Dijkstra

    题目链接 第一眼就是 $KDtree$ 优化建图然而,空间只有 $128mb$,开不下   时间不吃紧,考虑直接跑 $Dijkstra$ $Dijkstra$ 中存储的是起点到每个输入时给出的矩阵的最 ...

  4. p5471 [NOI2019]弹跳

    分析 代码 #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define ...

  5. [题解] Luogu P5446 [THUPC2018]绿绿和串串

    [题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...

  6. 【题解】Luogu P5470 [NOI2019]序列

    原题传送门 同步赛上我一开始想了个看似正确却漏洞百出的贪心:按\(a_i+b_i\)的和从大向小贪心 随便想想发现是假的,然后就写了个28pts的暴力dp 杜神后半程说这题就是个贪心,但我没时间写了 ...

  7. 【题解】Luogu P5468 [NOI2019]回家路线

    原题传送门 前置芝士:斜率优化 不会的可以去杜神博客学 这道题我考场上只会拆点跑最短路的70pts做法 后来回家后发现错误的爆搜都能拿满分(刀片) 还有很多人\(O(mt)\)过的,还是要坚持写正解好 ...

  8. 题解 [NOI2019]弹跳

    题目传送门 题目大意 给出 \(n\) 做城市,每座城市都有横纵坐标 \(x,y\).现在给出 \(m\) 个限制 \(p,t,l,r,d,u\),表示从 \(p\) 城市出发,可以花费 \(t\) ...

  9. [NOI2019] 弹跳

    题意: 给你平面上的$n$个点,共有$m$个弹跳装置. 每个弹跳装置可以从点$p_{i}$以$t_{i}$的代价跳到矩形$(L_{i},D_{i}),(R_{i},U_{i})$中的任何一个点. 现在 ...

随机推荐

  1. 由于找不到mingwm10.dll 由于找不到QtCore4.dll

    出现如下错误: 由于找不到mingwm10.dll 由于找不到QtCore4.dll 解决办法 将qt库加入环境变量

  2. Oracle 11.2.0.4单实例打补丁

    Oracle 11.2.0.4单实例打PSU,OJVM PSU补丁快速参考 写在前面: ·         1.Oracel打每个补丁的操作有时存在差异,所以不管多熟悉,都应该在打任何补丁之前阅读新补 ...

  3. 8皇后问题SQL求解(回溯算法)

    问题 八皇后问题是一个古老而著名的问题,是回溯算法的典型例题.该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一 ...

  4. pytorch报错:ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1,512,1,1])

    1.pytorch报错:ValueError: Expected more than 1 value per channel when training, got input size torch.S ...

  5. django2外键,F表达式,Q表达式

    一对多 环境 两个类:书的类别和文章,一片文章只能有一个作者,一个作者可以有多个文章,这之间组成了一对多的关系 class Category(models.Model): category = mod ...

  6. I2C协议简介

    主从芯片如何传输数据 AT24C02是一个存储芯片,需要把数据从ARM板发给AT24C02,也需要从AT24C02读取数据. I2C是一个主从结构,Master发起传输,slave接收或回应 一主多从 ...

  7. eclipse export runnable jar(导出可执行jar包) runnable jar可以执行的

    如果要导出可运行的JAR文件,需要选择Runnable Jar File. 1. 选择要到处JAR文件的工程,右键选择“Export”: 2. 选择“Java-->Runnable JAR fi ...

  8. 【myBatis】Error evaluating expression ‘’. Return value () was not iterable.

    被遍历的foreach不是数组或者集合

  9. Nginx on Docker 配置

    docker run -d -p 8082:8082 --name two-nginx -v ~/workplace/nginx/html:/usr/share/nginx/html -v ~/wor ...

  10. LeetCode 987. Vertical Order Traversal of a Binary Tree

    原题链接在这里:https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/ 题目: Given a binary ...