首先 Sink 的中文释义为:

下沉; 下陷; 沉没; 使下沉; 使沉没; 倒下; 坐下;

所以,对应 Data sink 意思有点把数据存储下来(落库)的意思;

Source  数据源  ---- > Compute  计算 -----> sink 落库

如上图,Source 就是数据的来源,中间的 Compute 其实就是 Flink 干的事情,可以做一系列的操作,操作完后就把计算后的数据结果 Sink 到某个地方。(可以是 MySQL、ElasticSearch、Kafka、Cassandra 等)。

这里我说下自己目前做告警这块就是把 Compute 计算后的结果 Sink 直接告警出来了(发送告警消息到钉钉群、邮件、短信等),这个 sink 的意思也不一定非得说成要把数据存储到某个地方去。

其实官网用的 Connector 来形容要去的地方更合适,这个 Connector 可以有 MySQL、ElasticSearch、Kafka、Cassandra RabbitMQ 等。

Data Source 介绍了 Flink Data Source 有哪些,这里也看看 Flink Data Sink 支持的有哪些:

看下源码有哪些呢?

可以看到有 Kafka、ElasticSearch、Socket、RabbitMQ、JDBC、Cassandra POJO、File、Print 等 Sink 的方式。

从上图可以看到 SinkFunction 接口有 invoke 方法,它有一个 RichSinkFunction 抽象类。

上面的那些自带的 Sink 可以看到都是继承了 RichSinkFunction 抽象类,实现了其中的方法,那么我们要是自己定义自己的 Sink 的话其实也是要按照这个套路来做的。

这里就拿个较为简单的 PrintSinkFunction 源码来讲下:

@PublicEvolving
public class PrintSinkFunction<IN> extends RichSinkFunction<IN> {
private static final long serialVersionUID = 1L; private static final boolean STD_OUT = false;
private static final boolean STD_ERR = true; private boolean target;
private transient PrintStream stream;
private transient String prefix; /**
* Instantiates a print sink function that prints to standard out.
*/
public PrintSinkFunction() {} /**
* Instantiates a print sink function that prints to standard out.
*
* @param stdErr True, if the format should print to standard error instead of standard out.
*/
public PrintSinkFunction(boolean stdErr) {
target = stdErr;
} public void setTargetToStandardOut() {
target = STD_OUT;
} public void setTargetToStandardErr() {
target = STD_ERR;
} @Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
StreamingRuntimeContext context = (StreamingRuntimeContext) getRuntimeContext();
// get the target stream
stream = target == STD_OUT ? System.out : System.err; // set the prefix if we have a >1 parallelism
prefix = (context.getNumberOfParallelSubtasks() > 1) ?
((context.getIndexOfThisSubtask() + 1) + "> ") : null;
} @Override
public void invoke(IN record) {
if (prefix != null) {
stream.println(prefix + record.toString());
}
else {
stream.println(record.toString());
}
} @Override
public void close() {
this.stream = null;
this.prefix = null;
} @Override
public String toString() {
return "Print to " + (target == STD_OUT ? "System.out" : "System.err");
}
}

  

可以看到它就是实现了 RichSinkFunction 抽象类,然后实现了 invoke 方法,这里 invoke 方法就是把记录打印出来了就是,没做其他的额外操作。

如何使用?

SingleOutputStreamOperator.addSink(new PrintSinkFunction<>();

  

这样就可以了,如果是其他的 Sink Function 的话需要换成对应的。

使用这个 Function 其效果就是打印从 Source 过来的数据,和直接 Source.print() 效果一样。

下篇文章我们将讲解下如何自定义自己的 Sink Function,并使用一个 demo 来教大家,让大家知道这个套路,且能够在自己工作中自定义自己需要的 Sink Function,来完成自己的工作需求。

最后

本文主要讲了下 Flink 的 Data Sink,并介绍了常见的 Data Sink,也看了下源码的 SinkFunction,介绍了一个简单的 Function 使用, 告诉了大家自定义 Sink Function 的套路,下篇文章带大家写个。

原创地址为:http://www.54tianzhisheng.cn/2018/10/29/flink-sink/

Flink 之 Data Sink的更多相关文章

  1. 《从0到1学习Flink》—— Data Sink 介绍

    前言 再上一篇文章中 <从0到1学习Flink>-- Data Source 介绍 讲解了 Flink Data Source ,那么这里就来讲讲 Flink Data Sink 吧. 首 ...

  2. 《从0到1学习Flink》—— 如何自定义 Data Sink ?

    前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...

  3. Flink 从 0 到 1 学习 —— 如何自定义 Data Sink ?

    前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...

  4. 《从0到1学习Flink》—— Data Source 介绍

    前言 Data Sources 是什么呢?就字面意思其实就可以知道:数据来源. Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集.历史的数据集:也可以用来做流处理,即实时的处理些 ...

  5. flink with rabbitmq,sink source mysql redis es

    flink-dockerhttps://github.com/melentye/flink-docker https://shekharsingh.com/blog/2016/11/12/apache ...

  6. 如何用Flink把数据sink到kafka多个(成百上千)topic中

    需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现 ...

  7. 如何用Flink把数据sink到kafka多个不同(成百上千)topic中

    需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现 ...

  8. Flink 之 Data Source

    Data Sources 是什么呢?就字面意思其实就可以知道:数据来源. Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集.历史的数据集: 也可以用来做流处理,即实时的处理些实时 ...

  9. 《从0到1学习Flink》—— Flink Data transformation(转换)

    前言 在第一篇介绍 Flink 的文章 <<从0到1学习Flink>-- Apache Flink 介绍> 中就说过 Flink 程序的结构 Flink 应用程序结构就是如上图 ...

随机推荐

  1. 在Linux主机使用命令行批量删除harbor镜像

     在Linux主机使用命令行批量删除harbor镜像 脚本使用说明: 此脚本不是万能脚本,根据自身环境要调整很多 能用harbor的域名就不要用IP 脚本前半部分可以套用,后半部分需一步一步试错,结合 ...

  2. 【转】MCU厂商简介

    国内MCU市场已达360亿元,2020年将超500亿元.2016年,国内MCU市场已达360亿元,同比增长达11%,而据IC Insights预测,随着中国大陆汽车电子和物联网领域的快速发展,对MCU ...

  3. keepalived,tomcat,memcache

    1.Nginx+Keepalived实现站点高可用 linux cluster类型 LB:nginx负载,varnish(director module)haproxy,lvs HA:keepaliv ...

  4. mqtt服务搭建(emqx,原emq)

    系统环境: ubuntu 18.04server lts 目标系统IP地址(可访问):192.168.1.31 emqx版本: v3.2.3 打开网页,根据目标系统和emqx版本选择好安装包.这里我选 ...

  5. Python如何打印文字对应的索引

    用python编写一个简单的小程序:将文字对应的索引打印出来. test=input('>>>') print(test) l=len(test) print(l) r=range( ...

  6. [LeetCode] 0279. Perfect Squares 完全平方数

    题目 Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9 ...

  7. 201671030116 宋菲菲 实验十四 团队项目评审&课程学习总结

    项目 内容 作业所属课程 所属课程 作业要求 作业要求 课程学习目标 (1)掌握软件项目评审会流程:(2)反思总结课程学习内容 任务一:团队项目审核已完成.项目验收过程意见表已上交. 任务二:课程学习 ...

  8. 开源项目阅读笔记--appium+adb

    git上搜了几个platform的代码,有一个项目给我感触挺深的. https://github.com/ThomasHansson/Appium-cross-platform-example/tre ...

  9. PHP Web 木马扫描器

    直接放在网站根目录运行即可 <?php /**************PHP Web木马扫描器************************/ /* [+] 版本: v1.0 */ /* [+ ...

  10. Spring Boot 2.x实战之定时任务调度

    在后端开发中,有些场景是需要使用定时任务的,例如:定时同步一批数据.定时清理一些数据,在Spring Boot中提供了@Scheduled注解就提供了定时调度的功能,对于简单的.单机的调度方案是足够了 ...