SVM算法

  • 既可用于回归问题,比如SVR(Support Vector Regression,支持向量回归)
  • 也可以用于分类问题,比如SVC(Support Vector Classification,支持向量分类)

这里简单介绍下SVR:https://scikit-learn.org/stable/modules/svm.html#svm-regression

SVM解决回归问题

一、原理示范

Ref: 支持向量机 svc svr svm

感觉不是很好的样子,没有 Bayesian Linear Regression的效果好;但其实也是取决于“核”的选取。

二、代码示范

print(__doc__)

import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt # #############################################################################
# Generate sample data
X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel() # #############################################################################
# Add noise to targets
y[::5] += 3 * (0.5 - np.random.rand(8)) # #############################################################################
# Fit regression model
svr_rbf = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)
svr_lin = SVR(kernel='linear', C=100, gamma='auto')
svr_poly = SVR(kernel='poly', C=100, gamma='auto', degree=3, epsilon=.1,
coef0=1) # #############################################################################
# Look at the results
lw = 2 svrs = [svr_rbf, svr_lin, svr_poly]
kernel_label = ['RBF', 'Linear', 'Polynomial']
model_color = ['m', 'c', 'g'] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 10), sharey=True)
for ix, svr in enumerate(svrs):
axes[ix].plot(X, svr.fit(X, y).predict(X), color=model_color[ix], lw=lw,
label='{} model'.format(kernel_label[ix]))
axes[ix].scatter(X[svr.support_], y[svr.support_], facecolor="none",
edgecolor=model_color[ix], s=50,
label='{} support vectors'.format(kernel_label[ix]))
axes[ix].scatter(X[np.setdiff1d(np.arange(len(X)), svr.support_)],
y[np.setdiff1d(np.arange(len(X)), svr.support_)],
facecolor="none", edgecolor="k", s=50,
label='other training data')
axes[ix].legend(loc='upper center', bbox_to_anchor=(0.5, 1.1),
ncol=1, fancybox=True, shadow=True) fig.text(0.5, 0.04, 'data', ha='center', va='center')
fig.text(0.06, 0.5, 'target', ha='center', va='center', rotation='vertical')
fig.suptitle("Support Vector Regression", fontsize=14)
plt.show()

可见,RBF有了径向基中“贝叶斯概率”的特性,跟容易找到数据趋势的主体。

实践出真知

Ref: SVM: 实际中使用SVM的一些问题

一、核的选择

如果features的范围差别不大。

    • 一种选择是不使用kernel(也称为linear kernel),直接使用x: 这种情况是当我们的n很大(即维度很高,features很多)但是训练样本却很少的情况下,我们一般不希望画出很复杂的边界线 (因为样本很少,画出很复杂的边界线就会过拟合),而是用线性的边界线。
    • 一种选择是使用Gaussian kernel: 这种情况需要确定σ2(平衡bias还是variance)。这种情况是当x的维度不高,但是样本集很多的情况下。如上图中,n=2,但是m却很多,需要一个类似于圆的边界线。(即需要一个复杂的边界)

二、默塞尔定理

如果features的范围差别很大,在执行kernel之前要使用feature scaling。

我们最常用的是 高斯kernel 和 linear kernel (即不使用kernel),但是需要注意的是不是任何相似度函数都是有效的核函数,它们(包括我们常使用的高斯kernel)需要满足一个定理(默塞尔定理),这是因为SVM有很多数值优化技巧,为了有效地求解参数Θ,需要相似度函数满足默塞尔定理,这样才能确保SVM包能够使用优化的方法来求解参数Θ。

三、LR / SVM / DNN 比较

我们将logistic regression的cost function进行了修改得出了SVM,那么我们在什么情况下应该使用什么算法呢?

【量少】如果我们的features要比样本数要大的话(如n=10000 (维度),m=10-1000 (样本量)),我们使用logistic regression或者linear kernel,因为在样本较少的情况下,我们使用线性分类效果已经很好了,我们没有足够多的样本来支持我们进行复杂的分类。

【适量】如果n(维度)较小,m(样本量)大小适中的话,使用SVM with Gaussion kernel.如我们之前讲的有一个二维(n=2)的数据集,我们可以使用高斯核函数很好的将正负区分出来.

【量多】如果n(维度)较小,m(样本量)非常庞大的话,会创建一些features,然后再使用logistic regeression 或者linear kernel。因为当m非常大的话,使用高斯核函数会较慢。

logistic regeression 与linear kernel是非常相似的算法,如果其中一个适合运行的话,那么另一个也很有可能适合运行。

我们使用高斯kernel的范围很大,当m多达50000,n在1-1000(很常见的范围),都可以使用SVM with 高斯kernel,可以解决很多logistic regression不能解决的问题。

神经网络在任何情况下都适用,但是有一个缺点是它训练起来比较慢,相对于SVM来说

SVM求的不是局部最优解,而是全局最优解

相对于使用哪种算法来说,我们更重要的是

    1. 掌握更多的数据,
    2. 如何调试算法(bias/variance),
    3. 如何设计新的特征变量,

这些都比是使用SVM还是logistic regression重要。

但是SVM是一种被广泛使用的算法,并且在某个范围内,它的效率非常高,是一种有效地学习复杂的非线性问题的学习算法。

logistic regression,神经网络,SVM这三个学习算法使得我们可以解决很多前沿的机器学习问题。

End.

[Scikit-learn] 1.4 Support Vector Regression的更多相关文章

  1. support vector regression与 kernel ridge regression

    前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...

  2. 机器学习技法:06 Support Vector Regression

    Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summ ...

  3. [机器学习]回归--Support Vector Regression(SVR)

    来计算其损失. 而支持向量回归则认为只要f(x)与y偏离程度不要太大,既可以认为预测正确,不用计算损失,具体的,就是设置阈值α,只计算|f(x)−y|>α的数据点的loss,如下图所示,阴影部分 ...

  4. 机器学习技法笔记:06 Support Vector Regression

    Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summ ...

  5. 翻译——2_Linear Regression and Support Vector Regression

    续上篇 1_Project Overview, Data Wrangling and Exploratory Analysis 使用不同的机器学习方法进行预测 线性回归 在这本笔记本中,将训练一个线性 ...

  6. 【Support Vector Regression】林轩田机器学习技法

    上节课讲了Kernel的技巧如何应用到Logistic Regression中.核心是L2 regularized的error形式的linear model是可以应用Kernel技巧的. 这一节,继续 ...

  7. [Scikit-learn] 1.4 Support Vector Machines - Linear Classification

    Outline: 作为一种典型的应用升维的方法,内容比较多,自带体系,以李航的书为主,分篇学习. 函数间隔和几何间隔 最大间隔 凸最优化问题 凸二次规划问题 线性支持向量机和软间隔最大化 添加的约束很 ...

  8. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  9. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

随机推荐

  1. Java - 框架之 Hibernate

    一:hibernate.cfg.xml 配置 <!-- 1.配置数据库连接的4个参数 --> <property name="hibernate.connection.dr ...

  2. php自定义函数之静态变量

    如果我想知道函数被调用了多少次怎么办?在没有学习静态变量的时候,我们没有好的办法来解决. 静态变量的特点是:声明一个静态变量,第二次调用函数的时候,静态变量不会再初始化变量,会在原值的基础上读取执行. ...

  3. learning java AWT 画图

    import javax.swing.*; import java.awt.*; import java.util.Random; public class SimpleDraw { private ...

  4. 检测 nginx 关闭切换keepalived

    检测nginx 端口启用  关闭 keepalived  检测 nginx 进程:然后关闭 keepalived ,关闭漂移IP : cat nginx_pid.sh #!/bin/bash whil ...

  5. python代码统计

    代码统计 修改filename为文件夹or文件地址,然后统计所有python文件代码 import os import sys def count_code_lines(filename): res ...

  6. 64位内核开发第十讲,IRQL中断级别了解

    目录 中断级别IROL了解 一丶IRQL 1.了解什么是中断 2.IROL中断级别. 3.遵守IROL编程规范的方式 中断级别IROL了解 一丶IRQL 1.了解什么是中断 中断就是产生的一个电信号. ...

  7. Spring的Core模块

    Core模块主要的功能是实现了反向控制IOC(Inversion of Control)与依赖注入DI(Dependency Injection).Bean配置以及加载.Core模块中有Beans.B ...

  8. 蛋疼的springboot web项目使用jetty容器运行

    出现的问题: 今天自己新建了一个maven webapp项目,准备自己看看springboot的东西,搭好的项目是这样的 一切都很正常啊,用run App的方式直接启动 成功啦,本应该到此结束,喝茶吃 ...

  9. 熔断机制hystrix

    一.问题产生 雪崩效应:是一种因服务提供者的不可用导致服务调用者的不可用,并将不可用逐渐放大的过程 正常情况下的服务: 某一服务出现异常,拖垮整个服务链路,消耗整个线程队列,造成服务不可用,资源耗尽: ...

  10. JavaWeb之Tomcat(1) —— Tomcat的目录结构

    1. bin 文件夹 存放Tomcat的可执行文件 (1) startup.bat 文件,启动Tomcat服务的批处理文件. (2) shutdown.bat 文件,结束Tomcat服务的批处理文件. ...