张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments

高效飞行在未知环境中的有效轨迹规划
链接:https://pan.baidu.com/s/1l0HtSOU-6QSojq7ELrmLIA  提取码:ayc1

Markus Ryll, John Ware, John Carter and Nick Roy

There has been considerable recent work in motion planning for UAVs to enable aggressive, highly dynamic flight in known environments with motion capture systems. However, these existing planners have not been shown to enable the same kind of flight in unknown, outdoor environments. In this paper we present a receding horizon planning architecture that enables the fast replanning necessary for reactive obstacle avoidance by combining three techniques. First, we show how previous work in computationally efficient, closed-form trajectory generation method can be coupled with spatial partitioning data structures to reason about the geometry of the environment in real-time. Second, we show how to maintain safety margins during fast flight in unknown environments by planning velocities according to obstacle density. Third, our recedinghorizon, sampling-based motion planner uses minimum-jerk trajectories and closed-loop tracking to enable smooth, robust, high-speed flight with the low angular rates necessary for accurate visual-inertial navigation. We compare against two state-of-the-art, reactive motion planners in simulation and benchmark solution quality against an offline global planner. Finally, we demonstrate our planner over 80 flights with a combined distance of 22km of autonomous quadrotor flights in an urban environment at speeds up to 9.4ms-1.

最近在无人机的运动规划方面进行了大量工作,以便在具有运动捕捉系统的已知环境中实现积极,高度动态的飞行。然而,这些现有的规划者尚未被证明能够在未知的室外环境中实现同样的飞行。在本文中,我们提出了一种后退的地平线规划架构,通过结合三种技术,可以实现反应性避障所需的快速重新规划。首先,我们展示了先前在计算上有效的闭合轨迹生成方法中的工作如何与空间划分数据结构相结合,以实时推理环境的几何形状。其次,我们展示了如何通过根据障碍物密度规划速度来在未知环境中快速飞行期间保持安全裕度。第三,我们的后退运动,基于采样的运动规划器使用最小冲击轨迹和闭环跟踪,以实现平稳,稳健,高速飞行,具有精确视觉惯性导航所需的低角速率。我们将模拟和基准解决方案质量方面的两个最先进的反应式运动规划器与一个全局规划师进行比较。 最后,我们展示了超过80个飞行计划器,在城市环境中,自动四旋翼飞行器的总距离为22km,速度高达9.4ms-1。

泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments的更多相关文章

  1. 泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle

    Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle Joshua Levin, Aditya Paranj ...

  2. 泡泡一分钟:Optimal Trajectory Generation for Quadrotor Teach-And-Repeat

    张宁 Optimal Trajectory Generation for Quadrotor Teach-And-Repeat链接:https://pan.baidu.com/s/1x0CmuOXiL ...

  3. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  4. 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning

    张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...

  5. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

  6. 泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions

    张宁  Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重 ...

  7. 机器人中的轨迹规划(Trajectory Planning )

    Figure. Several possible path shapes for a single joint 五次多项式曲线(quintic polynomial) $$\theta(t)=a_0+ ...

  8. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  9. 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...

随机推荐

  1. docker容器监控:cadvisor+influxdb+grafana

    cadvisor+influxdb+grafana可以实现容器信息获取.存储.显示等容器监控功能,是目前流行的docker监控开源方案. 方案介绍 cadvisor Google开源的用于监控基础设施 ...

  2. 如何利用python教程判断一个 IP 在不在线?

    假设今天老板给我们一个任务,让我们判断一下一个 IP 在不在线.我们随手用 python 写一个 ping IP 的代码: import os host = input('请输入要检测的 IP : ' ...

  3. 安装JDK(Windows)

    安装JDK java 安装JDK 下载JDK并安装 配置环境变量 变量名:JAVA_HOME 变量值:C:\Program Files\Java\jdk1.8.0_144 (jdk安装路径) 变量名: ...

  4. maven打包成可运行的jar

    在pom.xml添加 <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</ ...

  5. Centos7服务器搭建部署显卡计算环境以及常用软件的安装使用

    安装好anaconda的服务器上会more你已经安装好jupyter notebook,执行下面的命令可以提供链接地址允许远程浏览器打开并访问: jupyter notebook --no-brows ...

  6. .NET 使用 VLC 播放视频

    使用 VLC 播放监控有几个月了,现在是多个项目中都有用到.在使用的过程中也有一些细节供大家参考. 一.对 VLC 的了解 VLC 是一个开源的跨平台多媒体播放器及框架. VLC 官方出的有播放器.编 ...

  7. python SQLAlchemy的简单配置和查询

    背景: 今天小鱼从0开始配置了下 SQLAlchemy 的连接方式,并查询到了结果,记录下来 需要操作四个地方 1. config  ------数据库地址 2.init ----- 数据库初始化 3 ...

  8. java代码实现文件的下载功能

    昨天,根据需求文档的要求,自己要做一个关于文件下载的功能,从学校毕业已经很久了,自己好长时间都没有做过这个了,于是自己上网百度,最终开发出来的代码如下: 哦!对了,我先说一下我的思路,首先需要获取服务 ...

  9. C++内存分配/分布——堆栈存储区

    FROM: C++内存分配方式详解——堆.栈.自由存储区.全局/静态存储区和常量存储区 栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清除的变量的存储区.里面的变量通常是局部变量.函数参数等 ...

  10. po模式

    一条测试用例可能需要多个步骤操作元素,将每一个步骤单独封装成一个方法,在执行测试用例时调用封装好的方法进行操作.PO模式可以把一个页面分为三个层级,对象库层.操作层.业务层. 对象库层:封装定位元素的 ...