Kuhn-Munkres算法

KM算法,求完备匹配下的最大权匹配,时间复杂度O(\(n^3\))

所谓的完备匹配就是在二部图中,x点集中的所有点都有对应的匹配 且 y点集中所有的点都有对应的匹配 ,则称该匹配为完备匹配

算法思想

(1)初始化可行顶标的值;

(2)用匈牙利算法寻找完备匹配;

(3)若未找到完备匹配则修改可行顶标的值;

(4)重复(2)(3)直到找到相等子图的完备匹配为止。

模板

#include <bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define cin(a) scanf("%d",&a)
#define pii pair<int,int>
#define ll long long
#define gcd __gcd
const int inf = 0x3f3f3f3f;
const int maxn = 310;
const int M = 1e9+7;
int n,m,k,t; int a[maxn][maxn]; //图
int ex_x[maxn]; //x期望能匹配到的y值
int ex_y[maxn]; //y期望能匹配到的x值
bool vis_x[maxn]; //标记是否访问
bool vis_y[maxn]; //标记是否访问
int match[maxn]; //y的匹配
int slack[maxn]; //y的松弛,记录y最少还差多少期望值 bool dfs(int x)
{
vis_x[x] = 1;
for(int y = 0; y <= y; y++)
{
if(vis_y[y]) continue; int gap = ex_x[x]-ex_y[y]-a[x][y]; if(gap == 0) //如果符合要求
{
vis_y[y] = 1;
if(match[y] == -1 || dfs(match[y])) //如果y没有被匹配,或者y的x可以换另一个y
{
match[y] = x;
return true;
}
}
else //不符合要求,我还差gap的期望值才能有匹配
{
slack[y] = min(slack[y],gap);
}
}
} int km()
{
mem(match,-1);mem(ex_y,0); //y期望的x是0
mem(ex_x,0); //初始化
for(int i = 0; i < n; i++) //x期望的y是最大的那个
{
for(int j = 0; j < n; j++)
{
ex_x[i] = max(ex_x[i],a[i][j]);
}
} for(int i = 0; i < n; i++)
{
mem(slack,inf);
while (1)
{
mem(vis_x,0);mem(vis_y,0);
if(dfs(i)) break; //找到匹配 //如果找不到
int d = inf;
for(int j = 0; j < n; j++)
{
if(!vis_y[j]) d = min(d,slack[j]);
} for(int j = 0; j < n; j++) //降低期望
{
if(vis_x[j]) ex_x[j] -= d; if(vis_y[j]) ex_y[j] += d;
else slack[j] -= d;
}
}
} int res = 0;
for(int i = 0; i < n; i++)
{
res += a[match[i]][i];
}
return res;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("data.in", "r", stdin);
//freopen("data.out", "w", stdout);
#endif
while (~cin(n))
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
cin(a[i][j]);
}
}
printf("%d\n",km());
}
return 0;
}

例题

http://acm.hdu.edu.cn/showproblem.php?pid=2255

参考博客

https://www.cnblogs.com/wenruo/p/5264235.html

https://baike.baidu.com/item/KM算法

二分图匹配--KM算法的更多相关文章

  1. 训练指南 UVALive - 4043(二分图匹配 + KM算法)

    layout: post title: 训练指南 UVALive - 4043(二分图匹配 + KM算法) author: "luowentaoaa" catalog: true ...

  2. 牛客多校第五场 E room 二分图匹配 KM算法模板

    链接:https://www.nowcoder.com/acm/contest/143/E来源:牛客网 Nowcoder University has 4n students and n dormit ...

  3. 二分图最大权匹配——KM算法

    前言 这东西虽然我早就学过了,但是最近才发现我以前学的是假的,心中感慨万千(雾),故作此篇. 简介 带权二分图:每条边都有权值的二分图 最大权匹配:使所选边权和最大的匹配 KM算法,全称Kuhn-Mu ...

  4. 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  5. HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  6. USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)

    The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...

  7. HDU2255-奔小康赚大钱-二分图最大权值匹配-KM算法

    二分图最大权值匹配问题.用KM算法. 最小权值的时候把权值设置成相反数 /*-------------------------------------------------------------- ...

  8. 二分图 最大权匹配 km算法

    这个算法的本质还是不断的找增广路: KM算法的正确性基于以下定理:若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最 ...

  9. 二分图匹配之最佳匹配——KM算法

    今天也大致学了下KM算法,用于求二分图匹配的最佳匹配. 何为最佳?我们能用匈牙利算法对二分图进行最大匹配,但匹配的方式不唯一,如果我们假设每条边有权值,那么一定会存在一个最大权值的匹配情况,但对于KM ...

随机推荐

  1. 长乐国庆集训Day4

    T1 一道数论神题 题目 [题目描述] LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,只有点权. LYK想把这个图删干净,它的方法是这样的.每次选择一个点,将它删 ...

  2. flask源码系列

    更新中 HTML文档中元素存在,但是在浏览器中不显示.一般用于配合JavaScript代码使用. 04 LocalStack和Local对象实现栈的管理 05 Flask源码之:配置加载 06 Fla ...

  3. Linux查看CPU信息计算CPU核数量

    1. 物理CPU的个数: cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l 2. 每个物理CPU的核心数量: ...

  4. 个人Wiki搭建(Gitbook + GitHub Pages)

    工具选择:Gitbook + GitHub Pages 大概流程: 首先在本地编写md文件,然后生成对应的html文件,最后将这些html文件推送到github对应的gitbook仓库. 具体步骤: ...

  5. .Net MVC生成二维码并前端展示

    简介: 二维码又称二维条码,常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar Code条形码能存更多的信息,也能表示更 ...

  6. 要想获取select的值,使用ng-modle,否则无法获取select 的值

    ng-bind是从$scope -> view的单向绑定 ng-modle是$scope <-> view的双向绑定 <form role="form" c ...

  7. Android Scroller详解

    在学习使用Scroller之前,需要明白scrollTo().scrollBy()方法. 一.View的scrollTo().scrollBy() scrollTo.scrollBy方法是View中的 ...

  8. Nginx proxy_set_header

    配置示例 server{ server_name aaa.com location /api { proxy_pass http://xxx.com/api; proxy_set_header Hos ...

  9. [FreeRTOS]FreeRTOS使用

    转自:https://blog.csdn.net/zhzht19861011/article/details/49819109 FreeRTOS系列第1篇---为什么选择FreeRTOS? FreeR ...

  10. 哈希长度拓展攻击之De1CTF - SSRF Me

    题目考查:python代码审计.hash长度拓展攻击 0x01 题目源码: #! /usr/bin/env python #encoding=utf-8 from flask import Flask ...