http://c.biancheng.net/view/1924.html

Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果。”

本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价。第2章使用回归技术对房价进行预测,现在使用 MLP 完成相同的任务。

准备工作

对于函数逼近,这里的损失函数是 MSE。输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid。

下面是如何使用 MLP 进行函数逼近的示例:

  1. 导入需要用到的模块:sklearn,该模块可以用来获取数据集,预处理数据,并将其分成训练集和测试集;pandas,可以用来分析数据集;matplotlib 和 seaborn 可以用来可视化:


     
  2. 加载数据集并创建 Pandas 数据帧来分析数据:

     
  3. 了解一些关于数据的细节:

     

    下表很好地描述了数据:

  4. 找到输入的不同特征与输出之间的关联:

     

    以下是上述代码的输出:

  5. 从前面的代码中,可以看到三个参数 RM、PTRATIO 和 LSTAT 在幅度上与输出之间具有大于 0.5 的相关性。选择它们进行训练。将数据集分解为训练数据集和测试数据集。使用 MinMaxScaler 来规范数据集。
    需要注意的一个重要变化是,由于神经网络使用 Sigmoid 激活函数(Sigmoid 的输出只能在 0~1 之间),所以还必须对目标值 Y 进行归一化:

     
  6. 定义常量和超参数:

     
  7. 创建一个单隐藏层的多层感知机模型:

     
  8. 声明训练数据的占位符并定义损失和优化器:

     
  9. 执行计算图:

解读分析

在只有一个隐藏层的情况下,该模型在训练数据集上预测房价的平均误差为 0.0071。下图显示了房屋估价与实际价格的关系:

在这里,使用 TensorFlow 操作层(Contrib)来构建神经网络层。这使得工作稍微容易一些,因为避免了分别为每层声明权重和偏置。如果使用像 Keras 这样的 API,工作可以进一步简化。

下面是 Keras 中以 TensorFlow 作为后端的代码:

前面的代码给出了预测值和实际值之间的结果。可以看到,通过去除异常值(一些房屋价格与其他参数无关,比如最右边的点),可以改善结果:

TensorFlow多层感知机函数逼近过程详解的更多相关文章

  1. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  2. TensorFlow实现多层感知机函数逼近

    TensorFlow实现多层感知机函数逼近 准备工作 对于函数逼近,这里的损失函数是 MSE.输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid. 下面是如何使用 MLP 进行函数逼近的 ...

  3. DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解

    本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...

  4. libpcap 主要函数及过程详解

    http://blog.chinaunix.net/uid-21556133-id-120228.html libpcap(Packet Capture Library),即数据包捕获函数库,是Uni ...

  5. Hadoop MapReduce执行过程详解(带hadoop例子)

    https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 Map ...

  6. Linux启动过程详解(inittab、rc.sysinit、rcX.d、rc.local)

    启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备启动顺序信息.硬 ...

  7. Linux启动过程详解

    Linux启动过程详解 附上两张图,加深记忆 图1: 图2: 第一张图比较简洁明了,下面对第一张图的步骤进行详解: 加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的 ...

  8. Hadoop Mapreduce分区、分组、二次排序过程详解[转]

    原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2) ...

  9. MySQL关闭过程详解和安全关闭MySQL的方法

    MySQL关闭过程详解和安全关闭MySQL的方法 www.hongkevip.com 时间: -- : 阅读: 整理: 红客VIP 分享到: 红客VIP(http://www.hongkevip.co ...

随机推荐

  1. Redis(序)应用场景

    前言 在阅读了<大型网站技术架构:核心原理与案例分析>书后,稍微了解了Redis在大型网站架构中的应用场景和目的. 大型网站都是从小用户量,小流量的网站演变过来的,在小型网站的架构之初,L ...

  2. Java 8——Base64工具

    在java 8之前如果需要使用base64编解码,必须使用三方库,如:apache的commons-codec. 但是java 8将base64编解码的工具引入进来: public class Tes ...

  3. FileChannel(API详解)

    1.两种获取通道的方法FileChannel.open()的方式 FileChannel channell = FileChannel.open(Paths.get("a.txt" ...

  4. 用友U9执行JS代码。

      UFSoft.UBF.UI.AtlasHelper.RegisterAtlasStartupScript(part.Page, part.Page.GetType(), "JavaScr ...

  5. NetCoreApi框架搭建(二、Nlog使用配置)

    本文只配置了简单文件存储 1.添加nuget包 2.添加日志配置文件nlog.config 这里配置了三个target区分不同的日志,具体配置需要自己研究,推荐链接https://www.cnblog ...

  6. 使用Nginx反向代理Docker的Asp.Net Core项目的请求

    承接上文的对Kestrel的思考 上一篇介绍了如何一下在docker中发布Asp.Net Core项目(传送门)在最后尝试从外网访问网站的时候发现请求的响应头中包含了这个信息Server:Kestre ...

  7. PIE SDK主成分变换

    1.算法功能简介   主成分变换(Principal Component Analysis,PCA)又称K-L(Karhunen-Loeve)变换或霍特林(Hotelling)变换,是基于变量之间的相 ...

  8. 架构师小跟班:送你一份2019年阿里巴巴最新Java面试题,以供参考

    大家都说大厂面试造飞机,工作拧螺丝.这话只对了一部分,大厂是平时拧螺丝,一旦需要飞机时也能造的起来. 目录 技术一面(23问) 技术二面(3大块) JAVA开发技术面试中可能问到的问题(17问) JA ...

  9. JAVA集合框架的特点及实现原理简介

    1.集合框架总体架构 集合大致分为Set.List.Queue.Map四种体系,其中List,Set,Queue继承自Collection接口,Map为独立接口 Set的实现类有:HashSet,Li ...

  10. jmeter+jenkins配置过程

    目录 前置条件 脚本规划 讲解非GUI方式运行脚本 在jenkins里面新建项目 在Jmeter的jtl结果文件转换成html页面 邮件.配置 前置条件 1.jmeter安装好并已配置好环境变量,可正 ...