http://c.biancheng.net/view/1924.html

Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果。”

本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价。第2章使用回归技术对房价进行预测,现在使用 MLP 完成相同的任务。

准备工作

对于函数逼近,这里的损失函数是 MSE。输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid。

下面是如何使用 MLP 进行函数逼近的示例:

  1. 导入需要用到的模块:sklearn,该模块可以用来获取数据集,预处理数据,并将其分成训练集和测试集;pandas,可以用来分析数据集;matplotlib 和 seaborn 可以用来可视化:


     
  2. 加载数据集并创建 Pandas 数据帧来分析数据:

     
  3. 了解一些关于数据的细节:

     

    下表很好地描述了数据:

  4. 找到输入的不同特征与输出之间的关联:

     

    以下是上述代码的输出:

  5. 从前面的代码中,可以看到三个参数 RM、PTRATIO 和 LSTAT 在幅度上与输出之间具有大于 0.5 的相关性。选择它们进行训练。将数据集分解为训练数据集和测试数据集。使用 MinMaxScaler 来规范数据集。
    需要注意的一个重要变化是,由于神经网络使用 Sigmoid 激活函数(Sigmoid 的输出只能在 0~1 之间),所以还必须对目标值 Y 进行归一化:

     
  6. 定义常量和超参数:

     
  7. 创建一个单隐藏层的多层感知机模型:

     
  8. 声明训练数据的占位符并定义损失和优化器:

     
  9. 执行计算图:

解读分析

在只有一个隐藏层的情况下,该模型在训练数据集上预测房价的平均误差为 0.0071。下图显示了房屋估价与实际价格的关系:

在这里,使用 TensorFlow 操作层(Contrib)来构建神经网络层。这使得工作稍微容易一些,因为避免了分别为每层声明权重和偏置。如果使用像 Keras 这样的 API,工作可以进一步简化。

下面是 Keras 中以 TensorFlow 作为后端的代码:

前面的代码给出了预测值和实际值之间的结果。可以看到,通过去除异常值(一些房屋价格与其他参数无关,比如最右边的点),可以改善结果:

TensorFlow多层感知机函数逼近过程详解的更多相关文章

  1. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  2. TensorFlow实现多层感知机函数逼近

    TensorFlow实现多层感知机函数逼近 准备工作 对于函数逼近,这里的损失函数是 MSE.输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid. 下面是如何使用 MLP 进行函数逼近的 ...

  3. DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解

    本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...

  4. libpcap 主要函数及过程详解

    http://blog.chinaunix.net/uid-21556133-id-120228.html libpcap(Packet Capture Library),即数据包捕获函数库,是Uni ...

  5. Hadoop MapReduce执行过程详解(带hadoop例子)

    https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 Map ...

  6. Linux启动过程详解(inittab、rc.sysinit、rcX.d、rc.local)

    启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备启动顺序信息.硬 ...

  7. Linux启动过程详解

    Linux启动过程详解 附上两张图,加深记忆 图1: 图2: 第一张图比较简洁明了,下面对第一张图的步骤进行详解: 加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的 ...

  8. Hadoop Mapreduce分区、分组、二次排序过程详解[转]

    原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2) ...

  9. MySQL关闭过程详解和安全关闭MySQL的方法

    MySQL关闭过程详解和安全关闭MySQL的方法 www.hongkevip.com 时间: -- : 阅读: 整理: 红客VIP 分享到: 红客VIP(http://www.hongkevip.co ...

随机推荐

  1. Mac应用程序无法打开,提示不明开发者或文件损坏的处理方法

    很多用户在安装Mac软件的时候,经常会遇到提示“xxx.app已损坏,打不开.您应该将它移到废纸篓“或”打不开的xxx.app,因为它来自身份不明的开发者”,如下图的样子: 真的损坏了么?是不是真的要 ...

  2. 宽字符与Unicode (c语言 汉语字符串长度)

    在C语言中,我们使用char来定义字符,占用一个字节,最多只能表示128个字符,也就是ASCII码中的字符.计算机起源于美国,char 可以表示所有的英文字符,在以英语为母语的国家完全没有问题. 但是 ...

  3. golang--生成某区间的随机数

    import ( "crypto/rand" "fmt" "math" "math/big" ) func main() ...

  4. 2019-11-29-WPF-客户端开发需要知道的触摸失效问题

    原文:2019-11-29-WPF-客户端开发需要知道的触摸失效问题 title author date CreateTime categories WPF 客户端开发需要知道的触摸失效问题 lind ...

  5. WPF DispatcherTimer一些个人看法 (原发布 csdn 2017-04-25 19:12:22)

    wpf中的DispatcherTimer基本用法,本文不在叙述.主要写一些不同的,来提醒自己不要再犯同样错误. 前几天写代码时发现.当在非UI线程创建DispatcherTimer实例时,程序无法进入 ...

  6. asp.net core MVC 入门学习

    前言 .net core 已经更新到2.0以上的版本了,今天才开始正式接触,深为程序员,丢脸了,作为无所不能的IT人,我着手折腾一下这个跨平台的开发框架. (转载自百度百科).NET Core 是.N ...

  7. 3-awk

    1.输出双引号:awk '{print "\""}'        #放大:awk '{print "  \"  "}'使用“”双引号把一个 ...

  8. Service Mesh服务网格新生代--Istio

    原文: 数人云|万字解读:Service Mesh服务网格新生代--Istio 参考: istio 简介 Istio是啥?一文带你彻底了解! 使用Istio治理微服务入门 Istio 流量管理 ist ...

  9. 2019 淘友天下java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.淘友天下等公司offer,岗位是Java后端开发,因为发展原因最终选择去了淘友天下,入职一年时间了,也成为了面 ...

  10. android studio学习----偏好设置

    主要找到设置的界面:Files->Settings , android studio里面没有preferences 1.字体大小设置 进入后你也许发现字体大小或者样式不符合你的习惯,比如我是觉得 ...