Pandas | 21 日期功能
日期功能扩展了时间序列,在财务数据分析中起主要作用。在处理日期数据的同时,我们经常会遇到以下情况 -
- 生成日期序列
- 将日期序列转换为不同的频率
创建一个日期范围
通过指定周期和频率,使用date.range()
函数就可以创建日期序列。 默认情况下,范围的频率是天。参考以下示例代码 -
import pandas as pd datelist = pd.date_range('2020/11/21', periods=5)
print(datelist)
输出结果:
DatetimeIndex(['2020-11-21', '2020-11-22', '2020-11-23', '2020-11-24',
'2020-11-25'],
dtype='datetime64[ns]', freq='D')
更改日期频率
import pandas as pd datelist = pd.date_range('2020/11/21', periods=5,freq='M')
print(datelist)
输出结果:
DatetimeIndex(['2020-11-30', '2020-12-31', '2021-01-31', '2021-02-28',
'2021-03-31'],
dtype='datetime64[ns]', freq='M')
bdate_range()函数
bdate_range()
用来表示商业日期范围,不同于date_range()
,它不包括星期六和星期天。
import pandas as pd datelist = pd.date_range('2011/11/03', periods=5)
print(datelist)
输出结果:
DatetimeIndex(['2017-11-03', '2017-11-06', '2017-11-07', '2017-11-08',
'2017-11-09'],
dtype='datetime64[ns]', freq='B')
观察到11月3日以后,日期跳至11月6日,不包括4日和5日(因为它们是周六和周日)。
像date_range
和bdate_range
这样的便利函数利用了各种频率别名。date_range
的默认频率是日历中的自然日,而bdate_range
的默认频率是工作日。参考以下示例代码 -
import pandas as pd start = pd.datetime(2017, 11, 1)
end = pd.datetime(2017, 11, 5)
dates = pd.date_range(start, end)
print(dates)
输出结果:
DatetimeIndex(['2017-11-01', '2017-11-02', '2017-11-03', '2017-11-04',
'2017-11-05'],
dtype='datetime64[ns]', freq='D')
偏移别名
大量的字符串别名被赋予常用的时间序列频率。我们把这些别名称为偏移别名。
别名 | 描述说明 |
---|---|
B |
工作日频率 |
BQS |
商务季度开始频率 |
D |
日历/自然日频率 |
A |
年度(年)结束频率 |
W |
每周频率 |
BA |
商务年底结束 |
M |
月结束频率 |
BAS |
商务年度开始频率 |
SM |
半月结束频率 |
BH |
商务时间频率 |
SM |
半月结束频率 |
BH |
商务时间频率 |
BM |
商务月结束频率 |
H |
小时频率 |
MS |
月起始频率 |
T, min |
分钟的频率 |
SMS |
SMS半开始频率 |
S |
秒频率 |
BMS |
商务月开始频率 |
L, ms |
毫秒 |
Q |
季度结束频率 |
U, us |
微秒 |
BQ |
商务季度结束频率 |
N |
纳秒 |
BQ |
商务季度结束频率 |
QS |
季度开始频率 |
Pandas | 21 日期功能的更多相关文章
- Pandas日期功能
日期功能扩展了时间序列,在财务数据分析中起主要作用.在处理日期数据的同时,我们经常会遇到以下情况 - 生成日期序列 将日期序列转换为不同的频率 创建一个日期范围 通过指定周期和频率,使用date.ra ...
- pandas处理日期时间,按照时间筛选
pandas有着强大的日期数据处理功能,本期我们来了解下pandas处理日期数据的一些基本功能,主要包括以下三个方面: 按日期筛选数据 按日期显示数据 按日期统计数据 运行环境为 windows系统, ...
- 第十六节:pandas之日期时间
Pandas日期功能扩展了时间序列,在财务数据分析中起主要作用.
- (数据科学学习手札134)pyjanitor:为pandas补充更多功能
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 pandas发展了如此多年,所包含的功能已 ...
- pandas的基本功能(一)
第16天pandas的基本功能(一) 灵活的二进制操作 体现在2个方面 支持一维和二维之间的广播 支持缺失值数据处理 四则运算支持广播 +add - sub *mul /div divmod()分区和 ...
- pandas的筛选功能,跟excel的筛选功能类似,但是功能更强大。
Select rows from a DataFrame based on values in a column -pandas 筛选 https://stackoverflow.com/questi ...
- Pandas常用基本功能
Series 和 DataFrame还未构建完成的朋友可以参考我的上一篇博文:https://www.cnblogs.com/zry-yt/p/11794941.html 当我们构建好了 Series ...
- Pandas | 05 基本功能
到目前为止,我们了解了三种Pandas数据结构以及如何创建它们.接下来将主要关注数据帧(DataFrame)对象,因为它在实时数据处理中非常重要,并且还讨论其他数据结构. 一.系列基本功能 编号 属性 ...
- python数据分析之Pandas:基本功能介绍
Pandas有两个主要的数据结构:Series和DataFrame. Series是一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据标签构成.来看下它的使用过程 In [1]: from ...
随机推荐
- 创建简单Maven项目
目录: Maven基础构建概念.仓库.构建与部署 Maven作用 Maven项目install Maven安装配置.目录结构.配置文件 配置Maven默认本地仓库 Maven常见命令 使用Maven ...
- torch_02_多项式回归
""" torch.float64对应torch.DoubleTensor torch.float32对应torch.FloatTensor 将真实函数的数据点能够拟合成 ...
- go-gin-api 路由中间件 - 签名验证(七)
概览 首先同步下项目概况: 上篇文章分享了,路由中间件 - Jaeger 链路追踪(实战篇),文章反响真是出乎意料, 「Go中国」 公众号也转发了,有很多朋友加我好友交流,直呼我大神,其实我哪是什么大 ...
- Java8 新特性 Stream() 创建流
通过Controllere类的Stream()和parallelStream()创建流 //通过集合创建流 @Test public void test1() { String arr[] = new ...
- gogs私有代码库上传项目
https://blog.csdn.net/zhouxueli32/article/details/80538017 一.上传 在cmd命令里进入该项目 然后依次输入以下命令 git initgit ...
- 前端学习:JS学习总结(图解)
前端学习:JS学习总结(图解) JS的代码笔记 JS比HTML和CSS的知识点要多的多,下面分几段来介绍其内容... 为了能让大家更好的检索,前面的图解是整个JS的概括,后面的才是知识点... 旁边就 ...
- java自带日志框架打印info以下级别日志
本文为CSDN博主「LanTingShuXu」的原创文章,原文链接:https://blog.csdn.net/LanTingShuXu/article/details/80528558 java.u ...
- 外网IP和内网IP区别
外网IP和内网IP区别? 网络结构 如图,假设我们的计算机现在就是设备一,我们想要访问百度.如果我们正使用着校园网,那么首先我们需要先通过校园网的路由器把我们的内网ip转为校园网的外网ip.然后通过这 ...
- 基于.net core 3 和 Orleans 3 的 开发框架:Phenix Framework 7
Phenix Framework 7 for .net core 3 + Orleans 3 发布地址:https://github.com/phenixiii/Phenix.NET7 2019052 ...
- python数据分析三剑客之: matplotlib绘图模块
matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 - x轴和y轴 axis 水平和垂直的轴线 - x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括 ...