Pseudoforest

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1844    Accepted Submission(s): 704

Problem Description
In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

 
Input
The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
The last test case is followed by a line containing two zeros, which means the end of the input.
 
Output
Output the sum of the value of the edges of the maximum pesudoforest.
 
Sample Input
3 3
0 1 1
1 2 1
2 0 1
4 5
0 1 1
1 2 1
2 3 1
3 0 1
0 2 2
0 0
 
Sample Output
3
5
 
Source
 

这道题,完全是看了别人的结题报告做的,完全没有搞懂这道题要干么.....

  给出一个图,要求出最大的pseudoforest, 所谓pseudoforest就是指这个图的一个子图,这个子图的每个连通分量中最多只能有一个环, 而且这个子图的所有权值之和最大。这个就是所谓的伪森林。

过程类似与kruskal求最小生成树,千万不要直接求最大生成树,一开始时我想到的方法是用kruskal算法求出这个图的最大生成树, 然后给每一棵数再加上一条最大的边,构成一个环。 但是WA得快吐血了。

正确的做法和求最大生成树很类似,但是有一点改变, 因为每个连通分量允许有一个回环, 所以,我们可以在进行合并两颗树时,要判断这两颗树是否有回环,如果两个树都有回环,那么明显不可以合并这两颗树, 如果只有一棵树有回环,那么可以合并,然后标上记号。如果两个都没有回环,那么就直接合并了。
如果有两个点是属于同一棵树上的,那么判断这棵树上是否已有回环,如果没有的话,那么允许有一个回环,可以链接这两点,再标上记号。

代码:

 // hdu 3367 最大生成树
// author: Gxjun
// date: 2014/11/18
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int maxn =; struct node {
int u,v,c;
bool operator < (const node &bb) const {
return c > bb.c;
}
}sac[maxn*]; int n,m;
int father[maxn];
bool tag[maxn]; void init()
{
for(int i=;i<n;i++){
father[i]=i;
}
} int fin(int x){
while(x!=father[x])
x=father[x];
return x;
} bool Union(int x,int y)
{
x=fin(x);
y=fin(y);
if(x==y){
if(tag[x]) return ;
else{
tag[x]=; //表示已经形成环
return ;
}
}
if(tag[x]&&tag[y]) //如果两者均形成环,这说明形成了两个环
return ;
if(tag[x]) father[y]=x; //增大原有的环
else father[x]=y;
return ;
} int main()
{
while(~scanf("%d%d",&n,&m)&&n+m){
for(int i= ; i<m ; i++ ){
scanf(" %d %d %d ",&sac[i].u,&sac[i].v,&sac[i].c);
}
sort(sac,sac+m);
init();
memset(tag,,sizeof tag);
int ans=;
for(int i= ; i<m ; i++)
{
if(Union(sac[i].u,sac[i].v))
ans+=sac[i].c;
}
printf("%d\n",ans);
}
return ;
}

hdu 3367(Pseudoforest ) (最大生成树)的更多相关文章

  1. hdu 3367 Pseudoforest(最大生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  2. hdu 3367 Pseudoforest 最大生成树★

    #include <cstdio> #include <cstring> #include <vector> #include <algorithm> ...

  3. hdu 3367 Pseudoforest (最大生成树 最多存在一个环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3367 Pseudoforest Time Limit: 10000/5000 MS (Java/Oth ...

  4. hdu 3367 Pseudoforest

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  5. hdu 3367(与最大生成树无关。无关。无关。重要的事情说三遍+kruskal变形)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  6. HDU 3367 Pseudoforest(Kruskal)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  7. hdu 3367 Pseudoforest (最小生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  8. hdu 3367 Pseudoforest(并查集)

    题意:有一种叫作Pseudoforest的结构,表示在无向图上,每一个块中选取至多包含一个环的边的集合,又称“伪森林”.问这个集合中的所有边权之和最大是多少? 分析:如果没有环,那么构造的就是最大生成 ...

  9. HDU 3367 (伪森林,克鲁斯卡尔)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=3367 Pseudoforest Time Limit: 10000/5000 MS (Java/Oth ...

随机推荐

  1. SQL中添加远程服务器连接

    EXEC sp_addlinkedserver 'Testserver','','SQLOLEDB','192.168.1.221' EXEC sp_addlinkedsrvlogin 'Testse ...

  2. github 修改fork的代码之后如何提交代码并pull request

    官方的解释还是有点模糊,我是参照这篇文章来的. http://www.linuxidc.com/Linux/2012-12/76922.htm 关于Git的版本管理的原理,我是从这篇文章里面学习的. ...

  3. MyBatis 动态SQL查询,多条件,分页

    <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-/ ...

  4. [SAP ABAP开发技术总结]ABAP常用事务码

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  5. 关于Android构建

    “IDE都是给小白程序员的,大牛级别的程序员一定是命令行控,终端控,你看大牛都是使用vim,emacs 就一切搞定” 这话说的虽然有些绝对,但是也不无道理,做开发这行要想效率高,自动化还真是缺少不了命 ...

  6. python成长之路【第一篇】:python简介和入门

    一.Python简介 Python(英语发音:/ˈpaɪθən/), 是一种面向对象.解释型计算机程序设计语言. 二.安装python windows: 1.下载安装包 https://www.pyt ...

  7. Android手机_软件安装目录

    1. /data/data ==> 应该是 数据存放的位置 /data/app ==> 应该是 程序存放的位置 2.

  8. 06 SQL执行计划

    解释计划 与 执行计划的 区别 随着可以得到解释计划输出的开发工具, 比如 toad 的普遍使用, 生成解释计划就变的相当简单. 而不简单的是得到执行计划. 解释计划 EXPLAIN PLAN 用来显 ...

  9. Linux系统负载排查

    参考  http://www.ruanyifeng.com/blog/2011/07/linux_load_average_explained.html 在Linux系统中,我们一般使用uptime命 ...

  10. Matlab求齐次方程的解

    % 求Ax=0的解: r=rank(A): x=null(A,r) 求出来x的是归一化后的解.