Pseudoforest

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1844    Accepted Submission(s): 704

Problem Description
In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

 
Input
The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
The last test case is followed by a line containing two zeros, which means the end of the input.
 
Output
Output the sum of the value of the edges of the maximum pesudoforest.
 
Sample Input
3 3
0 1 1
1 2 1
2 0 1
4 5
0 1 1
1 2 1
2 3 1
3 0 1
0 2 2
0 0
 
Sample Output
3
5
 
Source
 

这道题,完全是看了别人的结题报告做的,完全没有搞懂这道题要干么.....

  1. 给出一个图,要求出最大的pseudoforest 所谓pseudoforest就是指这个图的一个子图,这个子图的每个连通分量中最多只能有一个环, 而且这个子图的所有权值之和最大。这个就是所谓的伪森林。
  2.  
  3. 过程类似与kruskal求最小生成树,千万不要直接求最大生成树,一开始时我想到的方法是用kruskal算法求出这个图的最大生成树, 然后给每一棵数再加上一条最大的边,构成一个环。 但是WA得快吐血了。
  4.  
  5. 正确的做法和求最大生成树很类似,但是有一点改变, 因为每个连通分量允许有一个回环, 所以,我们可以在进行合并两颗树时,要判断这两颗树是否有回环,如果两个树都有回环,那么明显不可以合并这两颗树, 如果只有一棵树有回环,那么可以合并,然后标上记号。如果两个都没有回环,那么就直接合并了。
  6. 如果有两个点是属于同一棵树上的,那么判断这棵树上是否已有回环,如果没有的话,那么允许有一个回环,可以链接这两点,再标上记号。

代码:

  1. // hdu 3367 最大生成树
  2. // author: Gxjun
  3. // date: 2014/11/18
  4. #include<iostream>
  5. #include<cstdio>
  6. #include<cstring>
  7. #include<cstdlib>
  8. #include<algorithm>
  9. using namespace std;
  10. const int maxn =;
  11.  
  12. struct node {
  13. int u,v,c;
  14. bool operator < (const node &bb) const {
  15. return c > bb.c;
  16. }
  17. }sac[maxn*];
  18.  
  19. int n,m;
  20. int father[maxn];
  21. bool tag[maxn];
  22.  
  23. void init()
  24. {
  25. for(int i=;i<n;i++){
  26. father[i]=i;
  27. }
  28. }
  29.  
  30. int fin(int x){
  31. while(x!=father[x])
  32. x=father[x];
  33. return x;
  34. }
  35.  
  36. bool Union(int x,int y)
  37. {
  38. x=fin(x);
  39. y=fin(y);
  40. if(x==y){
  41. if(tag[x]) return ;
  42. else{
  43. tag[x]=; //表示已经形成环
  44. return ;
  45. }
  46. }
  47. if(tag[x]&&tag[y]) //如果两者均形成环,这说明形成了两个环
  48. return ;
  49. if(tag[x]) father[y]=x; //增大原有的环
  50. else father[x]=y;
  51. return ;
  52. }
  53.  
  54. int main()
  55. {
  56. while(~scanf("%d%d",&n,&m)&&n+m){
  57. for(int i= ; i<m ; i++ ){
  58. scanf(" %d %d %d ",&sac[i].u,&sac[i].v,&sac[i].c);
  59. }
  60. sort(sac,sac+m);
  61. init();
  62. memset(tag,,sizeof tag);
  63. int ans=;
  64. for(int i= ; i<m ; i++)
  65. {
  66. if(Union(sac[i].u,sac[i].v))
  67. ans+=sac[i].c;
  68. }
  69. printf("%d\n",ans);
  70. }
  71. return ;
  72. }

hdu 3367(Pseudoforest ) (最大生成树)的更多相关文章

  1. hdu 3367 Pseudoforest(最大生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  2. hdu 3367 Pseudoforest 最大生成树★

    #include <cstdio> #include <cstring> #include <vector> #include <algorithm> ...

  3. hdu 3367 Pseudoforest (最大生成树 最多存在一个环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3367 Pseudoforest Time Limit: 10000/5000 MS (Java/Oth ...

  4. hdu 3367 Pseudoforest

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  5. hdu 3367(与最大生成树无关。无关。无关。重要的事情说三遍+kruskal变形)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  6. HDU 3367 Pseudoforest(Kruskal)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  7. hdu 3367 Pseudoforest (最小生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  8. hdu 3367 Pseudoforest(并查集)

    题意:有一种叫作Pseudoforest的结构,表示在无向图上,每一个块中选取至多包含一个环的边的集合,又称“伪森林”.问这个集合中的所有边权之和最大是多少? 分析:如果没有环,那么构造的就是最大生成 ...

  9. HDU 3367 (伪森林,克鲁斯卡尔)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=3367 Pseudoforest Time Limit: 10000/5000 MS (Java/Oth ...

随机推荐

  1. Cheatsheet: 2013 06.23 ~ 06.30, Farewell GoogleReader(2008.07.20~2013.06.30)

    Mobile Resources for Mac and iOS Developers- Introduction to Objective-C Modules Other 10 Principles ...

  2. ubuntu下php xdebug的安装(配置)

    首先Xdebug要和php版本对应,具体查看官网    https://xdebug.org/ xdebug-2.1.0PHP Version 5.3.10linux下解压xdebug包.1.进入xd ...

  3. Queue 应用——拓扑排序

    1. 拓扑排序 题目描述:对一个有向无环图(Directed Acyclic Graph, DAG)G进行拓扑排序,是将G中所有顶点排成线性序列,是的图中任意一堆顶点u和v,若边(u, v)在E(G) ...

  4. [UVA11464]Even Parity(状压,枚举)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  5. [C程序设计语言]第四部分

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  6. Codeforces Round #260 (Div. 2)AB

    http://codeforces.com/contest/456/problem/A A. Laptops time limit per test 1 second memory limit per ...

  7. vim功能使用

    转自:http://blog.csdn.net/xiajun07061225/article/details/7039413 vi与vim vi编辑器是所有Unix及Linux系统下标准的编辑器,他就 ...

  8. 《Linux内核设计的艺术》学习笔记(二)INT 0x13中断

    参考资料: 1. <IBM-PC汇编语言程序设计> 2. http://blog.sina.com.cn/s/blog_5028978101008wk2.html 3. http://ww ...

  9. SAP FI/CO凭证不一致的解决办法

    First, use program RKACOR20 to delete the incorrect CO documents. OKBA - Transfer FI Documents to CO ...

  10. mysql概要(四)order by,group 的特点,子查询

    1.order by 默认按升序排列(asc/desc),多字段排序 order by 字段 排序方式,字段2 排序方式,..:在分组排序中,排序是对分组后的结局进行排序,而不是在组中进行排序. 2. ...