CUDA编程中,习惯称CPU为Host,GPU为Device。编程中最开始接触的东西恐怕是并行架构,诸如Grid、Block的区别会让人一头雾水,我所看的书上所讲述的内容比较抽象,对这些概念的内容没有细讲,于是在这里作一个整理。

Grid、Block和Thread的关系

Thread  :并行运算的基本单位(轻量级的线程)
Block   :由相互合作的一组线程组成。一个block中的thread可以彼此同步,快速交换数据,最多可以同时512个线程。
Grid     :一组Block,有共享全局内存
Kernel :在GPU上执行的程序,一个Kernel对应一个Grid。

其结构如下图所示:

1
2
3
4
5
6
7
8
9
10
/*
另外:Block和Thread都有各自的ID,记作blockIdx(1D,2D),threadIdx(1D,2D,3D)
Block和Thread还有Dim,即blockDim与threadDim. 他们都有三个分量x,y,z
线程同步:void __syncthreads(); 可以同步一个Block内的所有线程
总结来说,每个 thread 都有自己的一份 register 和 local memory 的空间。
一组thread构成一个 block,这些 thread 则共享有一份shared memory。
此外,所有的 thread(包括不同 block 的 thread)都共享一份
global memory、constant memory、和 texture memory。
不同的 grid 则有各自的 global memory、constant memory 和 texture memory。
*/

存储层次
1
2
3
4
5
6
7
per-thread register                             1 cycle
per-thread local memory                     slow
per-block shared memory                   1 cycle
per-grid global memory                       500 cycle,not cached!!
constant and texture memories            500 cycle, but cached and read-only
分配内存:cudaMalloc,cudaFree,它们分配的是global memory
Hose-Device数据交换:cudaMemcpy
变量类型
1
2
3
4
5
__device__   // GPU的global memory空间,grid中所有线程可访问
__constant__ // GPU的constant memory空间,grid中所有线程可访问
__shared__   // GPU上的thread block空间,block中所有线程可访问
local        // 位于SM内,仅本thread可访问
// 在编程中,可以在变量名前面加上这些前缀以区分。
数据类型
1
2
3
4
5
6
7
8
9
// 内建矢量类型:
int1,int2,int3,int4,float1,float2, float3,float4 ...
// 纹理类型:
texture<Type, Dim, ReadMode>texRef;
// 内建dim3类型:定义grid和block的组织方法。例如:
dim3 dimGrid(2, 2);
dim3 dimBlock(4, 2, 2);
// CUDA函数CPU端调用方法
kernelFoo<<<dimGrid, dimBlock>>>(argument);
函数定义
1
2
3
4
5
6
7
8
9
10
__device__ // 执行于Device,仅能从Device调用。限制,不能用&取地址;不支持递归;不支持static variable;不支持可变长度参数
__global__ // void: 执行于Device,仅能从Host调用。此类函数必须返回void
__host__ // 执行于Host,仅能从Host调用,是函数的默认类型
// 在执行kernel函数时,必须提供execution configuration,即<<<....>>>的部分。
//   例如:
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
数学函数
1
2
CUDA包含一些数学函数,如sinpow等。每一个函数包含有两个版本,
例如正弦函数sin,一个普通版本sin,另一个不精确但速度极快的__sin版本。
内置变量
1
2
3
4
5
/*
gridDim, blockIdx, blockDim,
threadIdx, wrapsize.
这些内置变量不允许赋值的
*/
编写程序
1
2
3
4
5
6
7
/*
目前CUDA仅能良好的支持C,在编写含有CUDA代码的程序时,
首先要导入头文件cuda_runtime_api.h。文件名后缀为.cu,使用nvcc编译器编译。
目前最新的CUDA版本为5.0,可以在官方网站下载最新的工具包,网址为:
该工具包内包含了ToolKit、样例等,安装起来比原先的版本也方便了很多。
*/
相关扩展
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
1 GPU硬件
// i GPU一个最小单元称为Streaming Processor(SP),全流水线单事件无序微处理器,
包含两个ALU和一个FPU,多组寄存器文件(register file,很多寄存器的组合),
这个SP没有cache。事实上,现代GPU就是一组SP的array,即SPA。
每一个SP执行一个thread
 
// ii 多个SP组成Streaming Multiprocessor(SM)。
每一个SM执行一个block。每个SM包含8个SP;
2个special function unit(SFU):
这里面有4个FPU可以进行超越函数和插值计算
MultiThreading Issue Unit:分发线程指令
具有指令和常量缓存。
包含shared memory
 
// iii Texture Processor Cluster(TPC) :包含某些其他单元的一组SM
 
2 Single-Program Multiple-Data (SPMD)模型 
 
// i CPU以顺序结构执行代码,
GPU以threads blocks组织并发执行的代码,即无数个threads同时执行
 
// ii 回顾一下CUDA的概念:
一个kernel程序执行在一个grid of threads blocks之中
一个threads block是一批相互合作的threads:
可以用过__syncthreads同步;
通过shared memory共享变量,不同block的不能同步。
 
// iii Threads block声明:
可以包含有1到512个并发线程,具有唯一的blockID,可以是1,2,3D
同一个block中的线程执行同一个程序,不同的操作数,可以同步,每个线程具有唯一的ID
 
3 线程硬件原理
 
// i GPU通过Global block scheduler来调度block,
根据硬件架构分配block到某一个SM。
每个SM最多分配8个block,每个SM最多可接受768个thread
(可以是一个block包含512个thread
也可以是3个block每个包含256个thread(3*256=768!))。
同一个SM上面的block的尺寸必须相同。每个线程的调度与ID由该SM管理。
 
// ii SM满负载工作效率最高!考虑某个Block,其尺寸可以为8*8,16*16,32*32
8*8:每个block有64个线程,
由于每个SM最多处理768个线程,因此需要768/64=12个block。
但是由于SM最多8个block,因此一个SM实际执行的线程为8*64=512个线程。
16*16:每个block有256个线程,SM可以同时接受三个block,3*256=768,满负载
32*32:每个block有1024个线程,SM无法处理!
 
// iii Block是独立执行的,每个Block内的threads是可协同的。
 
// iv 每个线程由SM中的一个SP执行。
当然,由于SM中仅有8个SP,768个线程是以warp为单位执行的,
每个warp包含32个线程,这是基于线程指令的流水线特性完成的。
Warp是SM基本调度单位,实际上,一个Warp是一个32路SIMD指令
。基本单位是half-warp。
如,SM满负载工作有768个线程,则共有768/32=24个warp
,每一瞬时,只有一组warp在SM中执行。
Warp全部线程是执行同一个指令,
每个指令需要4个clock cycle,通过复杂的机制执行。
 
// v 一个thread的一生:
Grid在GPU上启动;
block被分配到SM上;
SM把线程组织为warp;
SM调度执行warp;
执行结束后释放资源;
block继续被分配....
 
4 线程存储模型
 
// i Register and local memory:线程私有,对程序员透明。
每个SM中有8192个register,分配给某些block,
block内部的thread只能使用分配的寄存器。
线程数多,每个线程使用的寄存器就少了。
 
// ii shared memory:block内共享,动态分配。
如__shared__ float region[N]。
shared memory 存储器是被划分为16个小单元,
与half-warp长度相同,称为bank,每个bank可以提供自己的地址服务。
连续的32位word映射到连续的bank。
对同一bank的同时访问称为bank conflict。
尽量减少这种情形。
 
// iii Global memory:没有缓存!容易称为性能瓶颈,是优化的关键!
一个half-warp里面的16个线程对global memory的访问可以被coalesce成整块内存的访问,如果:
数据长度为4,8或16bytes;地址连续;起始地址对齐;第N个线程访问第N个数据。
Coalesce可以大大提升性能。
 
// uncoalesced
Coalesced方法:如果所有线程读取同一地址,
不妨使用constant memory;
如果为不规则读取可以使用texture内存
如果使用了某种结构体,其大小不是4 8 16的倍数,
可以通过__align(X)强制对齐,X=4 8 16

CUDA学习笔记(一)【转】的更多相关文章

  1. CUDA学习笔记(三)——CUDA内存

    转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5f.html 结合lec07_intro_cuda.pptx学习 内存类型 CGMA: Compute ...

  2. CUDA学习笔记(二)【转】

    来源:http://luofl1992.is-programmer.com/posts/38847.html 编程语言的特点是要实践,实践多了才有经验.很多东西书本上讲得不慎清楚,不妨自己用代码实现一 ...

  3. CUDA学习笔记1

    最近要做三维重建就学习一下cuda的一些使用. CUDA并行变成的基本四路是把一个很大的任务划分成N个简单重复的操作,创建N个线程分别执行. CPU和GPU,有各自的存储空间: Host, CPU a ...

  4. CUDA学习笔记-1: CUDA编程概览

    1.GPU编程模型及基本步骤 cuda程序的基本步骤如下: 在cpu中初始化数据 将输入transfer到GPU中 利用分配好的grid和block启动kernel函数 将计算结果transfer到C ...

  5. CUDA学习笔记(四)——CUDA性能

    转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5h.html 四.CUDA性能 CUDA中的block被划分成一个个的warp,在GeForce880 ...

  6. CUDA学习笔记(一)——CUDA编程模型

    转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm56.html CUDA的代码分成两部分,一部分在host(CPU)上运行,是普通的C代码:另一部分在d ...

  7. CUDA学习笔记(二)——CUDA线程模型

    转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5b.html 一个grid中的所有线程执行相同的内核函数,通过坐标进行区分.这些线程有两级的坐标,bl ...

  8. cuda学习笔记——deviceQuery

    main(int argc, char **argv):argc是参数个数,**argv具体的参数,第0个是程序全名 cudaError_t类型:记录cuda错误,值为cudaSuccess则正确执行 ...

  9. CUDA学习笔记4:CUDA(英伟达显卡统一计算架构)代码运行时间测试

    CUDA内核运行时间的测量函数 cudaEvent_t start1; cudaEventCreate(&start1); cudaEvent_t stop1; cudaEventCreate ...

随机推荐

  1. iOS NSDictionary、NSData、JSON数据类型相互转换

    iOS经常需要用到数据类型的转换,下面列举一下常用类型的转换. 1.NSDictionary类型转换为NSData类型: //NSDictionary -> NSData: NSDictiona ...

  2. CSS练习一(模仿163邮箱登陆)

    // '); code = code.replace(/&/g, '&'); return code; }; var runCode = function (code) { if (c ...

  3. hdu 2053

    Ps:找规律题....凡是平方数都是开...WA了一次..数组给的太小?...后来给到3000..就AC了 代码: #include "stdio.h"long long dp[3 ...

  4. Linux Mint下编译Bochs

    我在Linux Mint命令行下输入sudo apt-get install bochs安装之后发现这个没有安装gui界面,使用也存在一些问题,所以直接删掉从官网下载代码自己编译安装. 给Linux ...

  5. Spring处理器

    Spring容器内部工作机制 Spring的AbstractApplicationContext是ApplicationContext抽象实现类,该抽象类的refresh()方法定义了Spring容器 ...

  6. 前App Store高管揭秘:关于“苹果推荐”的七大真相

    相信你已经看过很多这样那样关于如何获得苹果商店推荐的攻略了,但其实很多人依然陷入了很大的误区.前不久采访了前App Store团队高管Greg Essig,向各位开发者揭示关于获得苹果推荐的真相. 在 ...

  7. 使用免费内测托管平台fir.im测试

    1,使用Xcode先行把项目导成ipa文件.登录http://fir.im/ 2.点击左上角的苹果标志,把准备好的ipa文件拖入即可.4.填写相关材料即可开始上传5,让飞机灰一会即可.6.接着会看见: ...

  8. Windows系统定时重开或者关机

    at 6:00 /every:M,T,W,Th,F,S,Su cmd /c shutdown -r -t 60 (每天早上6点自动重启一次) at 0:00 /every:M,T,W,Th,F,S,S ...

  9. Android绘图之渐隐动画

    实现了一个有趣的小东西:使用自定义View绘图,一边画线,画出的线条渐渐变淡,直到消失.效果如下图所示: 用属性动画或者渐变填充(Shader)可以做到一笔一笔的变化,但要想一笔渐变(手指不抬起边画边 ...

  10. HDU 1695

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 x是[1,b],y是[1,d],求GCD(x,y)=k的对数(x,y无序) 对x,y都除以k,则求GCD( ...