Sightseeing tour
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9100   Accepted: 3830

Description

The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is visited exactly once. The bus should also start and end at the same junction. As in any city, the streets are either one-way or two-way, traffic rules that must be obeyed by the tour bus. Help the executive board and determine if it's possible to construct a sightseeing tour under these constraints.

Input

On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two positive integers m and s, 1 <= m <= 200,1 <= s <= 1000 being the number of junctions and streets, respectively. The following s lines contain the streets. Each street is described with three integers, xi, yi, and di, 1 <= xi,yi <= m, 0 <= di <= 1, where xi and yi are the junctions connected by a street. If di=1, then the street is a one-way street (going from xi to yi), otherwise it's a two-way street. You may assume that there exists a junction from where all other junctions can be reached.

Output

For each scenario, output one line containing the text "possible" or "impossible", whether or not it's possible to construct a sightseeing tour.

Sample Input

4
5 8
2 1 0
1 3 0
4 1 1
1 5 0
5 4 1
3 4 0
4 2 1
2 2 0
4 4
1 2 1
2 3 0
3 4 0
1 4 1
3 3
1 2 0
2 3 0
3 2 0
3 4
1 2 0
2 3 1
1 2 0
3 2 0

Sample Output

possible
impossible
impossible
possible
【分析】

给出一张混合图(有有向边,也有无向边),判断是否存在欧拉回路。

首先是对图中的无向边随意定一个方向,然后统计每个点的入度(indeg)和出度(outdeg),如果(indeg - outdeg)是奇数的话,一定不存在欧拉回路;

如果所有点的入度和出度之差都是偶数,那么就开始网络流构图:

1,对于有向边,舍弃;对于无向边,就按照最开始指定的方向建权值为 1 的边(不一定是1,应该是这条边出现的次数,因为可能重边,我就是在这个地方WA了);

2,对于入度小于出度的点,从源点连一条到它的边,权值为(outdeg - indeg)/2;出度小于入度的点,连一条它到汇点的权值为(indeg - outdeg)/2 的边;

构图完成,如果满流(求出的最大流值 == 和汇点所有连边的权值之和),那么存在欧拉回路,否则不存在。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
int power(int a,int b,int c){int ans=;while(b){if(b%==){ans=(ans*a)%c;b--;}b/=;a=a*a%c;}return ans;}
struct man
{
int c,f;
}w[N][N];
int dis[N],n,m;
int t,cnt,maxn,ans;
int in[N],out[N];
bool flag;
bool bfs()
{
queue<int>q;
memset(dis,,sizeof(dis));
q.push();
dis[]=;
while(!q.empty() && !dis[t]){
int v=q.front();q.pop();
for(int i=;i<=t;i++){
//if(i==t)printf("w[i][t].c=%d\n",w[i][t].c);
if(!dis[i]&&w[v][i].c>w[v][i].f){
q.push(i);
dis[i]=dis[v]+;
}
}
}
return dis[t]!=;
}
int dfs(int cur,int cp)
{
if(cur==t||cp==)return cp;
int tmp=cp,tt;
for(int i=;i<=t;i++){
if(dis[i]==dis[cur]+ &&w[cur][i].c>w[cur][i].f){
tt=dfs(i,min(w[cur][i].c-w[cur][i].f,tmp));
w[cur][i].f+=tt;
w[i][cur].f-=tt;
tmp-=tt;
}
}
return cp-tmp;
}
void dinic()
{
ans=;
while(bfs())ans+=dfs(,inf);
if(ans==maxn)puts("possible");
else puts("impossible");
} void init()
{
int a,b,d;
scanf("%d%d",&n,&m);t=n+;
for(int i=;i<=n;i++)in[i]=out[i]=;
while(m--){
scanf("%d%d%d",&a,&b,&d);
if(d==)w[a][b].c++;//有重边,若把它赋值为1,WA
out[a]++;in[b]++;
}
}
void solve()
{
flag=true;
for(int i=;i<=n;i++){
if((in[i]-out[i])&){
puts("impossible");flag=false;return;
}
if(in[i]<out[i])w[][i].c=(out[i]-in[i])/;
else if(in[i]>out[i])w[i][t].c=(in[i]-out[i])/,maxn+=(in[i]-out[i])/;
}
}
int main(){
int T;
scanf("%d",&T);
while(T--){
memset(w,,sizeof(w));
maxn=;
init();
solve();
if(flag) dinic();
}
return ;
}

POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)的更多相关文章

  1. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  2. poj1637 Sightseeing tour 混合图欧拉回路判定

    传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个 ...

  3. POJ 1637 Sightseeing tour ★混合图欧拉回路

    [题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...

  4. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  5. poj 1637 Sightseeing tour 混合图欧拉回路 最大流 建图

    题目链接 题意 给定一个混合图,里面既有有向边也有无向边.问该图中是否存在一条路径,经过每条边恰好一次. 思路 从欧拉回路说起 首先回顾有向图欧拉回路的充要条件:\(\forall v\in G, d ...

  6. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

  7. poj1637Sightseeing tour(混合图欧拉回路)

    题目请戳这里 题目大意:求混合图欧拉回路. 题目分析:最大流.竟然用网络流求混合图的欧拉回路,涨姿势了啊啊.. 其实仔细一想也是那么回事.欧拉回路是遍历所有边一次又回到起点的回路.双向图只要每个点度数 ...

  8. HDU 3472 混合图欧拉回路 + 网络流

    九野的博客,转载请注明出处:http://blog.csdn.net/acmmmm/article/details/13799337 题意: T个测试数据 n串字符 能否倒过来用(1表示能倒着用) 问 ...

  9. poj1637 Sightseeing tour[最大流+欧拉回路]

    混合图的欧拉回路定向问题. 顺便瞎说几句,有向图定欧拉回路的充要条件是每个点入度等于出度,并且图联通.无向图的话只要联通无奇点即可. 欧拉路径的确定应该是无向图联通且奇点数0个或2个,有向图忘了,好像 ...

随机推荐

  1. SeGue 多控制器跨界面传递数据原理

    多控制器跨界面传递数据原理

  2. idea给web项目添加tomcat

    首先,你需要新建一个web项目 生成这个样子: 我们可以新建lib文件夹用来装载必要jar,和新建classess文件夹用来存储编译后文件,这样感觉和myeclipes的项目相似. 进入项目设置,修改 ...

  3. 记录一些容易忘记的属性 -- UIImageView

    UIImage *image =  [UIImage imageNamed:@"back2.jpg"]; //创建一个图片对象,这个方法如果图片名称相同,不管我们调用多少次,得到的 ...

  4. poj1080 dp

    //Accepted 200 KB 0 ms //dp //dp[i][j]表示s1用前i个,s2用前j个字符能得到的最大分数 //dp[i][j]=max(dp[i-1][j]+score[s1[i ...

  5. UVa 10318 Security Panel

    题意:给你一个3*3的翻转模版,深色部分表示翻转,浅色部分不变.然后你可以在r*c的矩形里依照模版进行翻转,要求所有点亮所有块.输出最小的步骤. 思路:有一点比较好想.每个块至多被翻转一次,翻两次的效 ...

  6. oracle 备份和还原还有创建用户、表空间、授权

    --找到存放dbf文件的路径--E:\oracle\product\10.2.0\oradata\orcl--可以通过此语句进行查询select * from v$datafile; --创建表空间c ...

  7. (转)JS浮动窗口(随浏览器滚动而滚动)

    原文:http://hi.baidu.com/aiyayaztt/item/4201c55a6b729dced2e10c79 JS浮动窗口(随浏览器滚动而滚动) 往往用于一些联系方式,互动平台模块,随 ...

  8. C++数据结构之List--线性实现

    List(表)类似于队列,不同于队列的是,list可以随机读取/修改/插入某一position,通过position这一位置信息就可以直接修改相应位置的元素.实现方式和队列的类似,多了个positio ...

  9. html网页标题

    HTML代码 <html> <head> <!--<title>定义网页标题,显示在浏览器的标题--> <title>网页标题</ti ...

  10. inno setup教程解释脚本

    inno setup教程解释脚本 2007-04-08 21:31:36|  分类: 科技-> Inno Setu |  标签:inno   |举报 |字号 订阅     下载LOFTER客户端 ...