Highways

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2

Sample Output

1 6
3 7
4 9
5 7
8 3   这道题就是给出了n个村的坐标,然后给出了m条路,表示已经修好的路,不过要求的不是求最小权值,而是问,修建哪些路最优,输出需要修的路。
  既然这道题要求的是输出需要修建的路,只需要在把一个点从v拿出加到u里的同时,记录下这条边就OK了,所以,可以再维护一个数组,pre[MAXN],
因为cost[i][j]表示i和j之间的权值为cost[i][j],所以连接j的时候更新pre[j],即:
pre[i]表示j这个点的前导节点,在扫描u,v之间的最小边的同时更新pre[i].
  这道题不是直接给出了点,而是给出了点的坐标,其实只需要定义一个Point,用来存储点的坐标,point[i]的坐标为point[i].x和point[i].y
  另外,输出的顺序可以不一样,我开始就是因为顺序不一样不敢交。

#include<cstdio>
#include<cstring>
#include<cmath>
const double INF=999999999.9;//注意这里是double,我开始逗比写成了int

const int MAXN=755;
struct Point
{
  double x,y;
}point[MAXN];
double cost[MAXN][MAXN];
bool vis[MAXN];
double lowc[MAXN];
int pre[MAXN];
int tot;//记得初始化
double get_dis(int i,int j)
{
  return sqrt((point[i].x-point[j].x)*(point[i].x-point[j].x)+(point[i].y-point[j].y)*(point[i].y-point[j].y));

  //这里其实可以不开方
}
int prim(int n)
{
  memset(vis,false,sizeof(vis));
  memset(pre,0,sizeof(pre));//初始化
  vis[1]=true;
  double ans=0.0;//double double double 
  for(int i=2;i<=n;i++)
  {
    lowc[i]=cost[1][i];
    pre[i]=1;//点i的前导节点是1
  }
  for(int i=2;i<=n;i++)
  {
    double minc=INF;
    int p=-1;
    for(int j=1;j<=n;j++)
      if(!vis[j]&&lowc[j]<minc)
      {
        minc=lowc[j];
        p=j;
      }
    if(minc==INF)
      return -1;
    ans+=minc;
    vis[p]=true;
    if(cost[p][pre[p]]!=0||cost[pre[p]][p]!=0)
    {
      printf("%d %d\n",pre[p],p);//注意空格
    }
    for(int j=1;j<=n;j++)
      if(!vis[j]&&cost[p][j]<lowc[j])
      {
        lowc[j]=cost[p][j];
        pre[j]=p;//更新
      }
  }
  return ans;
}
int main()
{
  int n;
  while(scanf("%d",&n)!=EOF)
  {
    for(int i=1;i<=n;i++)
    {
      scanf("%lf%lf",&point[i].x,&point[i].y);//double型输入用lf,因为这个也逗比了很久
    }
    for(int i=1;i<=n;i++)
    {
      lowc[i]=INF;//初始化

      for(int j=1;j<=n;j++)
      {
        cost[i][j]=get_dis(i,j);
      }
    }
    int m;
    int u,v;
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
      scanf("%d%d",&u,&v);
      cost[u][v]=cost[v][u]=0;
    }
    double ans=prim(n);
    if(ans==0.0)
    printf("\n");
  }
  return 0;
}


poj_2485_mst的更多相关文章

随机推荐

  1. 《Java程序设计》第8周学习总结

    学号20145220 <Java程序设计>第8周学习总结 教材学习内容总结 15.1.1日志API简介 java.util.logging包提供了日志功能相关类与接口,不必额外配置日志组件 ...

  2. 不小心误删@‘local’操作恢复

    今天在测试用户权限的时候不小心把User: ''@'localhost';用户删除了 导致任何用户登录都无权限操作 恢复过程 停止mysql服务:在mysql安装目录下找到my.ini(linux下是 ...

  3. Windows7下QT5开发环境搭建 分类: QT开发 2015-03-09 23:44 65人阅读 评论(0) 收藏

    Windows7下QT开法环境常见搭配方法有两种. 第一种是:QT Creator+QT SDK: 第二种是:VS+qt-vs-addin+QT SDK: 以上两种均可,所需文件见QT社区,QT下载地 ...

  4. java多线程之:Java中的ReentrantLock和synchronized两种锁定机制的对比 (转载)

    原文:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html 多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之 ...

  5. 15款Chrome浏览器插件让设计师告别拖延症

    秋高气爽,分享一大波有效帮助设计师提高工作效率的Chrome浏览器扩展程序! 高效是另一种王道 无论是在工作中,还是在生活中,有些词我们说来就满满正能量,而另外一些话提起就很沮丧,后者如拖延症,前者如 ...

  6. debugging tools

    https://blogs.msdn.microsoft.com/debugdiag/ https://blogs.msdn.microsoft.com/debuggingtoolbox/2012/1 ...

  7. Abdicate

    每次,打开背单词软件,背诵单词时,A打头的单词,第一个,永远会是 Abdicate,放弃,抛弃. 真是有意思. 想想在学习js高级程序设计一书时,一横心,决心手动输入书中出现过的每一个代码片段示例. ...

  8. ABBYY FineReader 12扫描界面介绍

    ABBYY FineReader 12OCR图文识别软件自身拥有着自己的扫描界面,一般在默认情况下,ABBYY FineReader 使用其自身的扫描界面.本文就解析了ABBYY FineReader ...

  9. SET Transaction Isolation Level Read语法的四种情况

    转自:http://www.cnblogs.com/qanholas/archive/2012/01/04/2312152.html 存储过程:SET Transaction Isolation Le ...

  10. SharePoint 2010 最佳实践学习总结------第1章 SharePoint Foundation开发基础

    ----前言 这段时间项目出在验收阶段,不是很忙,就潜心把SharePoint学一下,不求有多深刻,初衷只是先入门再说.后续会发布一系列的学习总结.主要学习的书籍为<SharePoint2010 ...