题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3674

题意:三种操作:(1)合并ab所在集合;(2)查询ab是否在一个集合;(3)状态回到第x个操作之前。

思路:(1)每个节点保存一个深度;合并时找到两个节点的根,ra,rb,若ra的深度小,则ra的父亲设为rb,否则rb的父亲设为ra;(2)查询直接找到两个的根。这个的复杂度是多少呢?貌似是logn*logn。每次查询logn,深度logn;(3)这个就比较好操作了。

int ls[M],rs[M],dep[M],mp[M];
int e;
int root[N];

int n,m;

void build(int &t,int L,int R)
{
    t=++e;
    if(L==R)
    {
        mp[t]=L;
        return;
    }
    int M=(L+R)>>1;
    build(ls[t],L,M);
    build(rs[t],M+1,R);
}

int get(int t,int L,int R,int x)
{
    if(L==R) return t;
    int M=(L+R)>>1;
    if(x<=M) return get(ls[t],L,M,x);
    return get(rs[t],M+1,R,x);
}

int get(int t,int x)
{
    int p=get(t,1,n,x);
    if(mp[p]==x) return p;
    return get(t,mp[p]);
}

void upd(int L,int R,int x,int &y,int pos,int val)
{
    y=++e;
    if(L==R)
    {
        mp[y]=val;
        return;
    }
    ls[y]=ls[x];
    rs[y]=rs[x];
    int M=(L+R)>>1;
    if(pos<=M) upd(L,M,ls[x],ls[y],pos,val);
    else     upd(M+1,R,rs[x],rs[y],pos,val);
}

void add(int L,int R,int k,int pos)
{
    if(L==R)
    {
        dep[k]++;
        return;
    }
    int M=(L+R)>>1;
    if(pos<=M) add(L,M,ls[k],pos);
    else     add(M+1,R,rs[k],pos);
}

int main()
{

    n=getInt();
    m=getInt();
    build(root[0],1,n);

    int i;
    int ans=0;
    for(i=1;i<=m;i++)
    {
        int op;
        int x,y,k;
        op=getInt();
        if(op==1)
        {
            x=getInt();
            y=getInt();

            x^=ans;
            y^=ans;

            root[i]=root[i-1];
            x=get(root[i],x);
            y=get(root[i],y);
            if(mp[x]==mp[y]) continue;

            if(dep[x]>dep[y]) swap(x,y);
            upd(1,n,root[i-1],root[i],mp[x],mp[y]);
            if(dep[x]==dep[y]) add(1,n,root[i],mp[y]);
        }
        else if(op==2)
        {
            k=getInt();

            k^=ans;

            root[i]=root[k];
        }
        else
        {
            x=getInt();
            y=getInt();

            x^=ans;
            y^=ans;

            root[i]=root[i-1];
            x=get(root[i],x);
            y=get(root[i],y);

            if(mp[x]==mp[y]) puts("1"),ans=1;
            else puts("0"),ans=0;
        }
    }
}

BZOJ 3674: 可持久化并查集加强版的更多相关文章

  1. BZOJ 3674 可持久化并查集加强版(路径压缩版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  2. BZOJ 3674 可持久化并查集加强版(按秩合并版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  3. BZOJ 3674 可持久化并查集加强版(主席树变形)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 2515  Solved: 1107 [Submit][Sta ...

  4. bzoj 3674: 可持久化并查集加强版 (启发式合并+主席树)

    Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了!ndsf:暴力就可以轻松虐!zky:…… ...

  5. BZOJ 3673 可持久化并查集 by zky && BZOJ 3674 可持久化并查集加强版 可持久化线段树

    既然有了可持久化数组,就有可持久化并查集.. 由于上课讲过说是只能按秩合并(但是我也不确定...),所以就先写了按秩合并,相当于是维护fa[]和rk[] getf就是在这棵树中找,直到找到一个点的fa ...

  6. bzoj 3674 可持久化并查集加强版——可持久化并查集

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3674 用主席树维护 fa[ ]  和 siz[ ] .改 fa[ ] 和改 siz[ ] 都 ...

  7. BZOJ 3674 可持久化并查集加强版 可持久化并查集

    题目大意:同3673 强制在线 同3673 仅仅只是慢了一些0.0 这道题仅仅写路径压缩比仅仅写启示式合并要快一点点 两个都写就慢的要死0.0 改代码RE的可能是内存不够 #include<cs ...

  8. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  9. bzoj 3673&3674 可持久化并查集&加强版(可持久化线段树+启发式合并)

    CCZ在2015年8月25日也就是初三暑假要结束的时候就已经能切这种题了%%% 学习了另一种启发式合并的方法,按秩合并,也就是按树的深度合并,实际上是和按树的大小一个道理,但是感觉(至少在这题上)更好 ...

随机推荐

  1. JS中数组的操作

    1.数组的创建 var arrayObj = new Array(); //创建一个数组 var arrayObj = new Array([size]); //创建一个数组并指定长度,注意不是上限, ...

  2. 由Unicode编码想到弄懂编码表

    test unicode好 007400650073007400200075006E00690063006F00640065597D 这是一个Unicode编码,一共六七万的汉字,可以说Unicode ...

  3. 我的AutoCAD二次开发之路 (一)

    原帖地址 http://379910987.blog.163.com/blog/static/33523797201011184552167/ 今天在改代码的时候,遇到了AddVertexAt方法的用 ...

  4. Compress a Folder/Directory via Perl5

    Compress a Folder/Directory via Perl5 tested in Windows, Mac OS X, Ubuntu16.04 #!/usr/bin/perl #压缩指定 ...

  5. makefile 中 $@ $^ %< 使用【转】

    转自:http://blog.csdn.net/kesaihao862/article/details/7332528 这篇文章介绍在LINUX下进行C语言编程所需要的基础知识.在这篇文章当中,我们将 ...

  6. Java中Properties类的使用

    1.properties介绍 java中的properties文件是一种配置文件,主要用于表达配置信息,文件类型为*.properties,格式为文本文件,文件的内容是格式是"键=值&quo ...

  7. html状态码与缓存学习

    当浏览器访问一个页面时,浏览者的浏览器会向网页所在的服务器发送请求.当浏览器接收并显示网页前,此网页所在的服务器会返回一个包含HTTP状态码的信息头(server header)用以响应浏览器的请求. ...

  8. ACM题目————Robot Motion

    Description A robot has been programmed to follow the instructions in its path. Instructions for the ...

  9. 集合(Collection)使用笔记

    Collections.unmodifiableCollection这个可以得到一个集合的镜像,它的返回结果不可直接被改变,否则会提示 java.lang.UnsupportedOperationEx ...

  10. Java学习之路(七)

    1:什么是异常?  中断了正常指令流的事件. 异常是一个对象 ,在出现异常时,虚拟机会生成一个异常对象 生成对象的类是由 JDK 提供的