Hi, I'm back.

This is a realy classic DP problem to code.

1. You have to be crystal clear about what you are going to solve.
2. Apparently there are 2 DP sections
3. Think carefully about recurrence relations
5. Details: take care of indices boundaries - it costed me 1hr to find an indexing bug!
6. Again: think crystal clear before you code!

And, #2593 is exactly the same.

Here is my AC code:

 #include <stdio.h>

 #define MAX_INX 50010
#define Max(a,b) (a)>(b)?(a):(b) int max_sum2(int *pData, int cnt)
{
// DP: Max sum of sub-sequence: dp[i] = MAX(num[i], dp[i-1] + num[i]) // Left -> Right
int lt[MAX_INX] = { };
lt[] = pData[];
for (int i = ; i < cnt; i ++)
{
lt[i] = Max(pData[i], lt[i - ] + pData[i]);
} // Right -> Left
int rt[MAX_INX] = { };
int rtm[MAX_INX] = { };
rt[cnt-] = pData[cnt-];
for (int i = cnt-; i >= ; i--)
{
rt[i] = Max(pData[i], rt[i + ] + pData[i]);
}
rtm[cnt-] = rt[cnt-];
for (int i = cnt-; i >=; i--)
{
rtm[i] = Max(rtm[i+], rt[i]);
} // O(n) to find real max
int ret = -;
for (int i = ; i < cnt - ; i ++)
{
ret = Max(ret, lt[i] + rtm[i+]);
} return ret;
} int main()
{
int nTotal = ;
scanf("%d", &nTotal); while (nTotal--)
{
int num[MAX_INX] = { }; // Get Input
int nCnt = ; scanf("%d", &nCnt);
for (int i = ; i < nCnt; i ++)
{
scanf("%d", num + i);
} printf("%d\n", max_sum2(num, nCnt));
} return ;
}

POJ #2479 - Maximum sum的更多相关文章

  1. POJ 2479 Maximum sum 解题报告

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 40596   Accepted: 12663 Des ...

  2. (线性dp 最大连续和)POJ 2479 Maximum sum

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 44459   Accepted: 13794 Des ...

  3. POJ 2479 Maximum sum(双向DP)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 36100   Accepted: 11213 Des ...

  4. poj 2479 Maximum sum (最大字段和的变形)

    题目链接:http://poj.org/problem?id=2479 #include<cstdio> #include<cstring> #include<iostr ...

  5. POJ 2479 Maximum sum POJ 2593 Max Sequence

    d(A) = max{sum(a[s1]..a[t1]) + sum(a[s2]..a[t2]) | 1<=s1<=t1<s2<=t2<=n} 即求两个子序列和的和的最大 ...

  6. [poj 2479] Maximum sum -- 转载

    转自 CSND 想看更多的解题报告: http://blog.csdn.net/wangjian8006/article/details/7870410                         ...

  7. poj 2479 Maximum sum(递推)

     题意:给定n个数,求两段连续不重叠子段的最大和. 思路非常easy.把原串划为两段.求两段的连续最大子串和之和,这里要先预处理一下,用lmax数组表示1到i的最大连续子串和,用rmax数组表示n ...

  8. poj----Maximum sum(poj 2479)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30704   Accepted: 9408 Desc ...

  9. POJ2479 Maximum sum[DP|最大子段和]

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 39599   Accepted: 12370 Des ...

随机推荐

  1. Java--继承和super关键字

    一.Java中方法的参数传递(重点) Java中参数传递都是值传递 Java中的值分两种: 1.如果传递的参数是基本数据类型: 传递的值就是基本数据类型的值. 传递的时候,其实是把基本数据类型的值,复 ...

  2. springmvc学习笔记--REST API的异常处理

    前言: 最近使用springmvc写了不少rest api, 觉得真是一个好框架. 之前描述的几篇关于rest api的文章, 其实还是不够完善. 比如当遇到参数缺失, 类型不匹配的情况时, 直接抛出 ...

  3. php 函数ignore_user_abort()

    ignore_user_abort()  设置与客户机断开是否会终止脚本的执行. 工作中看到这样一个类似的方法,查资料理解了一下: 一个的ignore_user_abort()的例子,配合set_ti ...

  4. 隐藏select最右侧的下拉三角图标的css样式

    -webkit-appearance:none; -moz-appearance:none; appearance:none;

  5. 救援行动(save) (BFS)

    时间限制: 1 Sec  内存限制: 64 MB提交: 42  解决: 9[提交][状态][讨论版] 题目描述 Angel被人抓住关在一个迷宫了!迷宫的长.宽均不超过200,迷宫中有不可以越过的墙以及 ...

  6. UVA-11468 Substring(AC自动机+DP)

    题目大意:给一些模板串,一些字符的出现概率.问不会出现模板串的概率是多少. 题目分析:是比较简单的概率DP+AC自动机.利用全概率公式递推即可. 代码如下: # include<iostream ...

  7. 多网卡 指定网卡到指定IP

    route add -net 1.2.3.0/24 gw 网关 route add -host 目标IP dev eth1route add -host 目标IP gw 网关

  8. Cycles_per_instruction

    https://en.wikipedia.org/wiki/Cycles_per_instruction

  9. -aborted-exception-during-the-exce

    http://stackoverflow.com/questions/20988445/how-to-avoid-response-end-thread-was-being-aborted-excep ...

  10. malloc(): memory corruption: 0x0000000001cc7120 ***

    今天在调试一个程序时发生如题所示的错误,在malloc时报错. 经查是由于前面有内存越界,导致内存结构遭到破坏,才发生这样的错误.