java json 的生成和解析 --json-lib
类(java json的解析和生成):
import java.util.HashMap;
import java.util.Map; import net.sf.json.JSONArray;
import net.sf.json.JSONObject; public class JsonTest {
public String jsonToString(){
JSONObject users = new JSONObject();
JSONArray array = new JSONArray();
Map map = new HashMap();
map.put("name", "zhangsan");
map.put("age", 13);
map.put("likeRun", Boolean.TRUE);
map.put("height", 158.9);
JSONObject json = new JSONObject();
json.putAll(map);
array.add(json);
Map map2 = new HashMap();
map2.put("name", "lisi");
map2.put("age", 18);
map2.put("likeRun", Boolean.FALSE);
map2.put("height", 180.5);
JSONObject json2 = new JSONObject();
json2.putAll(map2);
array.add(json2);
users.put("users", array);
return users.toString();
}
public void jsonToObject(String str){
//获取json对象
JSONObject obj = JSONObject.fromObject(str);//这个方法可以将json格式的Map String JaveBean DynaBean转化为json对象
JSONArray array = obj.getJSONArray("users");
for(int i = 0 ; i < array.size(); i ++ ){
Map map = (Map) array.get(i);
map.get("name");
map.get("age");
}
}
}
js 解析json:
var jsonTest = document.getElementById("jsonTest");
var jsonjs = eval("(" + jsonTest.value+ ")");
jsonjs的值:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAU4AAAEGCAIAAACFOus/AAAgAElEQVR4nO2d31MbV57o++HWrUrdh7kbvE7K5Sf9CfOUB9+neZi9VbeKysNd19y76ygVp0rlqr0TalzZyWRS4+1JYTuem8ETFuKNWY0TEXtnRICWkRWMQbQBISS1bMCYHxYJ+AdC2Pg3Tgyo9+G0uk93n261fvbp1pf6PIjmqCU4fPQ9ffp8z5dZXl5eXFycm5tj/i8zODg4MxPZ+vGyKPIAANDPzs7ozExkcHBwcnJybm5ucXFxeXl5dXX17t272Wx2Y2Njc3Pz8ePHT58+ZZaWlm7evJlKpf7r//4v6+tXbH/rAACUyvr6lYsXuVQqdfPmzaWlpe++++727dv37t1bX1+/f//+w4cPnzx5wszPzzNehvl75o/cP9n+jgEAKI9bty4PDw/PzMzMz8/funXr+++/v3PnDh7YmRs3bkxNTY2MDOTzo7a/XQAAyiOfHx0eHkgkEjdu3JCH8XhgZ2ZmZoaHh2/dGrT9vQIAUAlyYL9586YmsD98+JC5du1aOBx++jRq21vMtXo9Hm8wZPtfCgAczePHI+Fw+Nq1ayiwy1fsuVxuc3OzBqrnWr0e6YsVlCPSY4P2ZanuZ+EzAgAK1Fd13GrB5/E0B3PFVC8fUB0AFCypvrVVHdVzwWaPxydI3xZURKoHC9Ge9YuiKvh7VMb6WcLBUFAZKvhFkRdYj+rL25qz+w8NAPby7Fm0iOoDAwNPH/ZW5cUEFrcuFPR6PKy/YLVPEIkRHg/O2GOspfq0xCcCQKPz/LlpVE+n0394i9l8NlyVFzNRvaC33k/siOBTB2v0LCOlQXUAUHjxYmRgYCCdTs/Ozi4sLMj323K53IMHD5h0+txbzP/4cbsWA/hQ0IsN4K2q3hzMaU4LqgNAcX78MWqmuiD8+RBzaGe3TtNyuWCzTmbtAF66mFdAF+ryJ4j6uLYxADQoL19GL168KAgCWjOXyWRWVlbu3r2LVtEwgiCcOsRs71TvZpsyCC8orZ6B003Fq4OzqrFqho8wAye/FkzLAQ3P9rap6qlUKhQ6tbszYttbrNWtOABoLHZ3R0OhUCqVmp6eRgvmVKonk8lQKGTDAnhsBg6utwGgcvJ5PhQKJZNJsuqJRILjONvfJQAAlcNxXCKRuH79+tzc3NLSkrwMHlQHAFcBqgNAQwCqA0BDgFRHC+ZAdQBwLWaqT01NEVXn+c8AAKAZoupTU1NowZy8DH5tbW1jY8NQdQAAHIeZ6vF4nDt31Pa3CABA5XAcF4/HZdWXl5dx1cNHDxyo4ottv/EGUC1s/9cBnIWZ6pOTk+eOVll1239hdwB/SaBUOI6bnJxEy+AXFhYymYyc3MZMTk5W91qd2n9QUlJdLZA3zMFeS87hUaXlFHJ4DHJ1qP1LAtRSNdUDgY+OHXtbQyDwEd6G1n/QUNDrEwRf7dfbh4JezQdKKOiVUvQEVrfgP9fqBdWBKmGmeiz2xSGGsXiijQ2OZd/BPWfZdzY2VJ8U22+80d3UNS1926s8zgY6mk6faDp9oul0R09EVBpIB7sT0hmm2zojiULjw4Gs2dNRwLQQq3OtXrQfDuaVwDYHBW28NTioS8LNtXrVm3AUkvP0qivkgs3aBHtQHageHMfFYrFUKiXnseKqx0oawIfDn+Cqh8OfaBoYqB6JHO6MZDVni0QOEz4UptsUw6fb0EcA8em8KFpVPRdsZgVe4yG+PZbAEvaxkw+qXw4ZjumNPkekNmaqk08IqgNVwkz1iYmJklTf2rp88qQPeX7ypG9rS1u21SiqZ3s6tQEZC9Qnmk6faJJkLuitgvD0ElD0ywWb5SE0QTyDg+pN7wrBXPAVtq/F3TZUPRdsJlyWg+pA9eA4bmJigpjHWrLqosjH42eQ6vH4Gf1PDQfwIi8WjD3R1iuKvJgNdMjjcwyi6oSnW0e9DY5Z0CYf9LPKwMHPqvbG8Qmin1W5Slad7LkIqgPVxEz18fHxUlXf3Y22t7/X3v7eLmlHuu033ujG4vMJteqiiBve291EsNpEdfXTeVG0NIDHIznuahmqC6xqlzuB9bCsT92eoLqh5yKoDlQTjuPGx8erproo8ktLXy8tfU380fYbb0ixt+l0R0+gENWV6Td5oC6K6jG89vocx+DpohXV8TkzXlRfllscwMvTct5gK4tvaKmanJNfjrBPJmH8L58BVAeqRPVVN6Gh/kHV4wWE2bQcAVAdqB5mqo+NjYHqZZALNnsI+1jz5CU0ZGAJDVBlOI4bGxvT7E4BqtMO/CWBUimq+qmyT7331i3AHdj+bwpUjrnq/UcPHCr71PAv4g6gH92BmepX+353wPLCWD2O+ReBwhKmOKYfAVM4jrt69erU1BRejxXtOcVc7fvdgQPlb01R/r+IcpvNYMWrOdiqGKzwo76um6p9WaqbntYtgOruwFT1q59bT3fRo/8XsZL9plo8kw106JfZFAFbvqbcV6+Rk6A64BiQ6mh3Cr3qVyvZcEr/L2Il+01MdMkLZtB6G2XNjLXVb/hdrsLNbT/r8QXRPTBNaVeP/u6XclyzuqZw1C+qE9oMbq25BFDdHRRTvYKbbcR/kaLZb9meTrSOHSWxRdpKU127oE1KO8ELNuOr1hH4yhYlgVyzTpYkM0R1wDGYqc7zfNVVL5r9lu3p7OjpjRyWMtWKLHrXYaw6MYFcPkIuAu1Rxv/EjxhQHXAMHMfxPI92p8A3ja2V6mKx7Dcx0YUN2iORw6WprlmOig/gMdWNozp5LaqR0qA64BhsUN08+00Ue+XsN/y6XRStbTWBt1ESTjAnBZ82q0Qlv58lzcYTdoOSGtdhRzqbAdXdgQ2qi6bZb6KI32xTT79b3EBK2StCJTA5e0zktXEeH8MrER47g3raD6blAEdgpvro6GiNVKeMhhiHl41z+hEwg+O40dHRWCwm7yQpbwXvdtWxjaJgqZwJtPcjYI0GVh2wBvSjOwDVgSJAP7oDUB0oAvSjOzBTPRqNguoA9KM74DguGo3KW8HLBV5AdcRE38H0fibdHtMe2c+k9zNC35rt77DmuKIfAVDdjIm+g0Lf2kTfQVx1jFhy//G43W+y5ji/HwFedKjq021K4Rdl2ay6IEyh2Auh8JsoWl6NI/IojBNVXz8vHDk/YXsX1hpQ3R2YqT4yMkKn6gpKQrt6Oa1U44Vc+E0UK1Q93o4G8AcT63b3Xx0A1d0Bx3EjIyNygRe8bBvFqie6sHJuxqobFH4rEdMBfAPYDqq7AyeqjlmtKdKqWTlvUPitRIxVF+PtDTAzB6q7A2errhR+I1tNLvwmitW5VoeoDjgIJ6quBHCs8Jtqrk4Zq5MKv4miRdXx+2rp/UwyJfLKhTpcqwOOwpGqE1Bntk+3lV1uHdACqrsDpDpets2ZqqvqsZZeZR0wBlR3B65RHagV0I/uAFQHigD96A7MVB8eHgbVAehHd8Bx3PDw8Pj4OCrb5kbVs4EOo1tugAVo6UegMpyounqJa1EsqW50zhJfS4t5YlxayZaJJeWDRdbVryWO1DevDlR3Bw2gekXnrOS1iIlx6KCmZbxdummveawH++la4khdbuyD6u7AqapHejp1+Wr6JLZI5DBpk2lCDhzhnOo1OeobeOUvtiOqPtF3sBDMzVfgqdJmiaeqPqC6O3Co6qeVhBZp5YxxEhvhW30OHPGc+ucWqEh18s4WqePqIT2RtcQROarHkvUZw4Pq7kCv+q1bt+hXXWe1WRKbRdWJnxSVXyyYLqGXvJ3oOyhJnjpeZL3t+nmhcJ2fgKgOWMdFqhsmsWl1JeTA2aK6fOGNx2qz9gZPrzGgujtwi+omSWwaXQ1z4IxUJ2W5V2kTG2m4vpY4ogzF1YmxsaR6Al912vrsgQOquwPXqE5MYlMvjC8YTsqBM4zk2cJcXenTcsUS47DLcmVYrhFbq7pyTmuRvwqA6u6AqPrKygrNqlcG5MCVCKX9CJRI46kOOXAlQms/AqXRgKoDpQH96A5AdaAI0I/uAFQHigD96A7cpToksdUAUN0dOFF1g5Xtol71SOSwxb3f5XOWvV28dfysxyfUq4MrB1R3B05UHWFlHVtJqkstsz2dJ6qwe7wJoDpgA65RnRjq1QKrCkXoc+Dw/aTlFXjEZXlKDpzqnryFdTUC61F9sf7C8eag0OpFB72tOZFXfyJoHheeLdTjXwRUdweuUZ14UBJYHaiJOXDqDwWzHBijHDjrq2UJUV1gZcN5gUUOE1UPBb1E/2sIqO4OXK+6rtgDOQcOu1ZXFtUYRvXKkmHIqutCNEn1XCHyS18W1+FXBKjuDlyvemekp+tE8XSXQlTPBjpUBZvpU70Q/OsGqO4OGkD1LKrcivupvyFHnJYjFYczUb2EAby2mYHqUjOB9Xgk7f1svS7R69WPQJ1wourEfDXiQWyyLdGlTMIRcuDwuXrlsyCrTL8Fikd1y5mtuWCzblqOILDczBtsVSI8PoavS4QH1d0BUn1sbMxBqgN1BfrRHYDqQBGgH90BqA4UAfrRHYDqQBGgH90BqA4UAfrRHYDqQBGgH90BqF46yZaxfS0ZsX/WtzfW12/c8mx6X0vG9ndb5ptXcG0/NhigeukkW8Z8rTmxf9a3N500aUmr6pbevIJr+7HBcKLq5NwyfMtnaalMoqujrauj6fSJw4FIG57Hps9s40XR8hoYgi1n0/v2jhUoRMuz6X0ts31vooOyV5nPlJbY05WWSrBdb43pT4sdlFuWcE5QvVFxqOoGuWUIOQtVWg/b2910uqMnku3p7OiJmFV3K6GQgxFn0z55BdvZ9L69Y5+dFUVeXG+N+XQr29ZbY1LYJ7Y8m9735uw6L4q8mGyRfir2z/oKB4kUOSdV/QjUFYeqTnI10YXlqxVUb+uV20iqm1V3q5D+WR8+YscH8NjjZMuYEqtlLfUtiarzub43VVG6tHNS1Y9AXXGN6njFpcJBI9Vrs8lMru9N9ZC4mMCqgwQtsWG5VlQkfMH/Es5JUz8CdcWFqitZaETVTaq7VTKAX2+NFQJvgSKqZz4zjcBFR92koX6Rc9LVj0BdcY3qyrSckoVGVp2Y2caLYiWq98/6lImxMcVAs1gd62u1HNX3jkky4/N/ykW79XPS1I9AXXGi6o2BNFUufZv5zOpt8KoD/egOQHVqUd3AG9NeHdQP6Ed3AKoDRYB+dAegOlAE6Ed3AKoDRYB+dAegurvItXqrvc8k9KM7oFH1QOCjjY3yX7e67O5ERz++sP1ixJ43gG0aWRDYtNJD+aobnhZUdwc0qn7s2Nss+044/MnW1mXb/0C2qo5tI63c869RURdQ3eVQqjri5ElfPH5mdzda9ntAoi4PX7zU0n2ppTtzOYSOL1zkstORoQ+6L7V0T/zxL7vbUVHktx5cQUcutXRnpyOiyM9zHPoWcT3wDXq6vmXJWFiukws2y7tHo2+9wRByMqjsG41+I6WQm7rkC7nAm1I6jvWLxpXkKuxHgCqoVh3R3v7e0tLX5Z1qdyc6cuwCUnR3JxplLzy5MySK/DzHyYbPc1x2OoL/dOvBlSu/PY8e66O6UcvSsFbLUTUUF3we1i/ZK9morx4RCnrlI+QCbwKrlVnToFr9CFCF+1WXRc3nR5P/1iOHa0003swMykEbb6BX3ahl1TFWXXYyFPRqrswx1ckF3gi1ZUSRB9VdD9WqV2sAL6ueOtsjR3X6VS+M2DXfalQ3jurkAm9GSoPqLodS1as1LYeLupkZHHy/Gz3W+4kPxTUDeHm4bt6yNKyk1uBtcq1epWxbwUnB59H6ictPLvAmsB78E6SAUbQH1V0CjapX8WYbulZH82ey56JBKN7MDKKW3x7txu29E7+kmZYzalkCFrPoBJ9usg2fgdPHYXWcJxd4w86gnvaDaTkXQ6PqVcTmu+I2UP1bcTT0I1A5zlMdD9TKbbCvviEcDHxTH9VLeks1eQ9K8K9+SWZQ3R3UVnXAHdj+bwpUTg1VBwCAHkB1AGgIaqK67QNOoP7Y/q8MmFMr1St7W5HIYV3pFetQkA3WaIDq9FNX1QOBjzSLXo8dezsQ+EjdLBI53BnJRiKHy1OdimywRgNUp5+6qr6xwbHsO7jnLPuOwWoZkurOyQZrNEB1+qn3AD4c/gRXPRz+xKBlmapTkg3WaIDq9FNv1be2Lp886ZOzWYxXuZc5gKckG6zRANXpx4ZpuXj8DFI9Hj9j3KxM1SnJBms0QHX6sUH13d1oe/t77e3vmWanljmApyQbrNEA1enHnpttS0tfG+82Id1pU5VPRjgnG6zRANXph8776nVGNQ6/UMFXPj+KsPs3qjdO6/FGpIFVN8gGu3DhgljW14ULF374Yejly+GdnZFGs90ZPd7YNLDqBsiq//TTXYvIqm9scI8ehbe2Lm9vDzeU7Y7u8QYBVNdSieo3b361svLX+/dDW1uXGyq2O7rHGwRQXYtG9cQLURTF5VnM7dm8PGh/sqpSPRr9UzrdtbLy10ePwi9fNlBgd3SPNwiguhZc9cSLfGJkN/ECVz2/LOY59WNZ9WDw99Hon27e/Gpjg/vhhyFQHaAHR6o+3abcjVPuvWcDHcotutMdPWiXyN5ufUvR7L6dfgCvVn038UIK5j+dzYsv8qcw1f3+D8LhT65f92ezfS9eXK5kW2tnAarTjyNVV8gGOqQb773dTZ2RLC+KvJjoOtHWK4q8KEYih+Xb8r3d1m7RF1X9p5/ucg9EURTFB3nNtfqZM0c57rggnF1b693aAtUBinCm6oku3RobkurqOH9CbmCKlaiOJOceiJqo/vnnv+rvbwXVAQpxouqY1Visxkb1heidDXQcDmRLPH8R1UfyT5RrdelHoDqoTj/OVn26rSA22erebqOtbMoewI/kn4j5xIgyLZcYAdVBdQfgRNWVAN7REyBFdWysjo/h8c8CA9Xz+VH1DDy+HE4K5qdWlZtt6CNAVr2z81d9fa2p1Nl793qfPx9snFvroDr9OFJ1Aoku3OTpNnkGvjQ0qpe6hAZUB6jFLapjN9VONJ0uzMCXDKheHqA6/ciqM//AOFr1qlGJ6nCtDlALHtWZtxhQvSLV4b46QC0cxzF/zzC/YJh/YJi3GOZthjnMrKysMD6mcVUv+wtWywHUglTHr9Vdp3o20FFK9Yh8fvSHH4Y2NribN7+KRv8UDP7e7//gzJmjn3/+K0Rnp5bPP//VmTNH/f4PYA08QC1OvFZXL3EtiiXVlXPm86MvXw4/ehReWflrOv15R9PpQPgTjjve39+K6OvT0t/fynHHw+FPdJlt430H0/uZdHsMe61Ycj+TRhw5PyEdXEsckQ4KfWsm73MCnVDieNz2f6C69DhQBRpA9RLPmc+P7uyMbG1dvn8/tLJy7oumfx247heEszKplBZ0/Pp1vzpffazvoNC3NtF3EFc93s4kU9rH8Xb542AtcURpoGei76D5Z4E9gOr0Y3StTrvqkZ5OXb6aPolN3pFS/dFAyIFTn3NqdHt7OHkKX5Nz+sTvv1pb611b6713r/fezG9+4fmfZ2d6793rvXevFx3PZvtIu9BoVJ/oO1gI5rHk/oOJdfyByK+fF7SjABWgOlAmKKozv2DQtTrzNoOiOs3X6r3d8p1zZT2scRIb4Vt9Dpz2nGv50Z2dkZcvewJNX6ReXN7aUnj+fPD5yr/8o+d/da8MPn8++Pz5IDr+4sVl0t5yGtV5UeRTx1XD7/XzAnqcOp7efzDRd9xcdXkAT5HzoDr9GKlOe1TXWm2WxGZRdeInReUXC4Sojou9LvLr54Uj5+NytE+ZqY4RS+43G+rXFVCdfvBrdafcVzdQ3TCJTasrIQeubqqrLsULP4olsUE7YRRgAH7ZbzOgOv24JaqbJLFpdDXMgTNSnZTlbrH4hMiTVJcH3vF26bH8QHXdLn1rcOkuD/tpAFSnH+ZNhnhf3XGqE5PY1AvjC4aTcuAMI3m2MFenWldvSXX1jbFCBEYTbwj1R4CqmYRW9Xg7fXfaat/jQBVwTbqLZaqUAwfgUN3jgMiLjah6lXLgABy6exzgxYZUHag+0OP0A6oDVQB6nH5AdaAKQI/Tj7tULzGJDagWoDr9OFF1g5Xtol71SOSwpb3fsXNa3S6+MkJBr1zw2V+sjVL7nVpAdfpxouoIK+vYSlJdapnt6TxR+u7xpSH4jA3X4GdBdaAauEZ1YqhXC6wqFKHPgcP3k5ZX4BGX5Sk5cKp78paX0OWCzd5gCD8isB75ixXwxjrVc63ygAA7iZ8lP71OgOr04xrViQclgdWBmpgDp/5QMMuBIebV8aJoSfVcsNmj+tK1z7V6VW5rVA8FvfqXCAW9cht7RgGgOv24XnVdsQdyDhx2ra4sqjGM6hUmw+ijuij4MP9NVJc+LFRPx+I8+eOj9oDq9ON61TsjPV0niqe7FKJ6NtChKthcH9X9rOKnxm1ylJZGB+iCP9fq9bbmav4Ht73HgYpoANWzqHIr7qf+hhxxWo5UHM5E9fKv1RXVBbZIVBfxl5MM97M2XaLXt8eBinCi6sR8NeJBbLIt0aVMwhFy4PC5euWzIKtMvwWKR/VqTMt5g60Ft5WZNo/H48GsJgzU8TG8HREeVKcfpPr4+LiDVAeoA3qcfkB1oApAj9MPqA5UAehx+gHVgSoAPU4/oDpQBaDH6QdUrzHrrbF9e9PJqrakD+hx+gHVSyfZMravJSP2z/r2xvr6RZEXxf5Z396xfXvH9rVkNI0rUZ3wQpTi8h53BaB66SRbxnytObF/1qdx+Gxar3pNXog6XN7jrsCJqpNzy/Atn6WlMomujraujqbTJw4HIm14Hps+s40XRctrYKyqbhDq11tj+9DxYoMCUB2oHg5V3SC3DCFnoUrrYXu7m0539ESyPZ0dPRGz6m4lFHIgQozqev/fnF23/nRnAKrTj0NVJ7ma6MLy1Qqqt/XKbSTVzaq7VYgV1flc35tYPC/6dGcAqtOPa1THKy4VDhqpXqtNZiypjkDCj312tmhLRwCq048LVVey0Iiqm1R3q8cAHmO9NebDU1NAdaCGuEZ1ZVpOyUIjq07MbONFsRLVz6YLM21j+/aOSQIXPShftBNbOglQnX6Iqq+urtKsOkAd0OP0A6oDVQB6nH5AdaAKQI/TD6gOVAHocfrRq57JZEB1oDSgx+kHVHcXuVavHVtKQo/TD42qBwIfbWyU87q1YHcnOvrxhe0XI/a8AWx/yILApkUdyle9oloRoDr90Kj6sWNvs+w74fAnW1uXbf8D2ao6tj+8cs+/RvVbQHWXQ6nqiJMnffH4md3daNmnQqIuD1+81NJ9qaU7c1naknnhIpedjgx90H2ppXvij3/Z3Y6KIr/14Ao6cqmlOzsdEUV+nuPQt4jrgW/Q0/UtS8Zi1SesimNhS2k/6/EFCwWhCptMG2wabVDLTSkRx/pFdcU4pZJEHXscqAOy6slkcnp6mi7VEe3t7y0tfV3eqXZ3oiPHLiBFd3eiUfbCkztDosjPc5xs+DzHZacj+E+3Hly58tvz6LE+qhu1LA0Lqguseigu1W/1s4qNeFkYBF7UjVzLTWCJMkNUdznuV10WNZ8fTf5bjxyuNdF4MzMoB228gV51o5ZVx1h12clQ0Ku5MsdUJ9dy0386IEB1l0O16tUawMuqp872yFGdftU1RWDwATymunFUJ9dyM1IaVHc5ZqqPjIw4fVoOF3UzMzj4fjd6rPcTH4prBvDycN28ZWlYSa3B2yjFmDEnBZ9H6ycuP7mWm8B6tHVgpcblZ/WB6vTDcdzIyMjExARSfX5+3n7Vq3izDV2ro/kz2XPRIBRvZgZRy2+PduP23olf0kzLGbUsAYtZdEoxZpXApPLMCHWcJ9dyw86gnvaDaTkXQ6PqVcTmu+I2UKNbcUWgp8cBI5ynOh6oldtgX31DOBj4pj6ql/SWavIelOBvT/VlUJ1+nKc6QCHQ4/Rjpno0GuW49jJOCh3faECP0w/HcdFoNBaLpVKpmZmZhYUFpPra2hqoDlgFepx+zFT/8sg/vf/Ku2WcFDq+0YAepx+6ojpa0Ka5MVY5xMWtlU7XrSWOMOn9THr/wcS63b1oO6A6/dClOqLq0+Y1UH2i72AyJfKiyKeOp4+cn7C9I+0FVKcfM9VHR0cpUR2/m4WvV9WnrOE5Z+g4MTtN83TVcpoSt4hePy/sPx63vSPtBVSnH47jRkdHY7GYIAhI9eXl5du3b1Okej4/Kvx7D/pW/hGesrb14MpUR3B3O4ovYsVXqht9dmieLv20RNVTx9PtMfs70l5AdfopqroN99U1ZmoCNVqLirfB/beuuv7pZbzV9fMCXKuLoLoTcIbqqqira4M/lofr+MRejVQHz2VAdfoxU53neRpUR4NtTXYK0VXih4JIyk4zU93aAB48xwHV6YfjOJ7nJycnBUGYnZ1dXFz87rvvbt++nc1mbVBds5icuBUUOlg0qmvSzjTZaRWrHm9Hd9okpNn4hgVUpx+6VK+Qzcyg/Okgivw8x8kz80BNAdXpx1WqawYFtUojA3SA6vRTK9WBRsP2f2XAHDPVr169Wp7qAADQBsdxV69ejcfj6XT6xo0bSPU7d+6A6gDgKkB1AGgIZNWvXbtWD9WhHhtOLtjsqWCfVsuEgl5d4Rdlh0lSNRjCrtKAszFTfWxsrOqqQz02jFDQ6xMEH2mr5qq/kOYDBds3Wtl2ugB5A3nA2XAcNzY2NjU1de3atbm5uaWlpe+///7u3bvr6+tI9XPVfT2ox6Zqxvo1Xglsc1AoxNvCcYODHu3WkSpp8cIvOtUFn3wetCe0avNJUN2NFFP9y6PVfT2oxyaTCzazAq/xUGBVMiMDiQfVL4cMx/RGnyNSG63qcuFHdOYgC6q7nyKqn/olU93Xg3psBRT98IJNBJMNDuIbQnvwei+Sw7jbBNW9QX/QK5V50Z4fVHcjpqqHjh14q1ZRvcHrsWlrJ5oEbfJBvO4SXuYBPfazKldJA3gPPrwH1ReiVY8AAAYESURBVN2Pmerj4+M0T8s5uh6buvSiqiJyqaoLrKqik8B6WNZnWJ5V93T8ul15/6C66+A4bnx8PJFIXL9+/ebNm7du3VpZWamh6lCPTRR5fSDFL8stDuDlaTlvsFVVvEk/o05QHR9W6Ao/gepuxEz1iYkJmpfQ2H2rjFI0pZpFkSerbgKo7kY4jkOlXahQHeqxVYJUSpVQR5W0hIYMLKFxLWaqx2IxmqM6AADW4TgO7QytKdiWy+VAdQBwD6de/Xl3GFQHALdjqvrAZx++8mvb32JDkGv12lQaHWgQ2l59N1go7TIf/E3wdx/1vdbU949dfOseJhYLn/rZ/7N+LshaU8BWyBQE9rP621rq9mWpbnpaACggX6sj1f9j70dXVy8OvtYUPneDmZyc/PKfS1AdstYKYAtUlHvsNXISVAcswXGcvNvUQs+HfznWf/v2wOXXfp/Y2GAmJydLKuQEWWsIOZlE/tYbDCEng+h+mMdTuPVduLlllDfu0a60KRz1i+rkNoPbbAAgYaZ6PB4vaVoOstYQ2sVtUgqKn1VsxFewI/BVLqGgV7OmXTotSWaI6oAlOI5Du03Nzs4ufvPbvx7jaFHduVlrxqoTk8nlI/iYH/+Sx//EjxhQHbCEmepTU1Plqd7gWWuapan4AB5T3Tiqk9elGikNqgOW4DgOpbXduHEDpbWh3abu379fjuqQtaZtoySfYE4KPl2SCS4/thsUhsB6SFtTGUV7AFBRTdUha01B2TdCJbB2JwkFdZzHx/BKhMfOoJ72g2k5oChmqicSCbtWyzVe1hqMw4HawnEcymCV96WoleqQtUYA2zQKlsoBNcVM9WQyGQqF8vlR298lAAAVEgqFksnk9PS0JoMVVAcA95DfHv3CRPVUKgWqA4AL2P1x5ItQSFoAPz+fyWTUqg9+/ttXfg2qA4DT2X4xdPLVn3Tt+ZsvP7iAVL/6L019rzWFXtsz8PoeRhCu/OFnv9ypYCUMAAA0sP1s+OzFi9IC+IWF5eVlOVn9wfw5RhCEwK9/+cMPoDoAOJsfHg5pVb94DEX18Ot7mHQ6PTDQ+fxRWUtNAACghufZwa6BAbQAfmFhYXm5/9Jr/2dk+l4ul3vw4Apz7dq1cDj87OG3tr9RAAAq4cntUOfXYbnc8vJyf6SgunByj6x6jYqWAQBQJx5v9P3h1Z/8+W//5qvf/GVxcXF5eXmMlablvg18WVD9GVyrA4Czefo0Gg7jUX359u3baFpuc3MTVAcAl1BE9ZmZmStXriwv279RHAAAlbC8fPnKlSszMzNoqZy8AH5jY2Nzc5O5ceNGIpEYGblo+xsFAKASRkYuJhIJOaSjm+poqdzDhw+Z+fl5FNhXV+F+GwA4ldXVIRTS5+fn9SH98ePHzOLi4tzcXDKZHBgIbW4O2/6OAQAolc3N4YGBUDKZnJubW1xc/O677zQh/cmTJ0wmk0G2T0xMDAyEVlfhoh0AnMTt20MDA6GJiQnkOSredPfu3Ww2u7ExNPr68WuPHz99+pT5/vvvM5nMwsLC3NxcIpEYGhri+YHV1aGXL0cR29uj29ujOzv87u5oPm//LwYAjUZ+ZzSf53d3eSSj7Obq6hDPDwwNDSUSibm5uYWFhUwmg4bua2traJEc//rx60+ePHv2jLmT/o8v/lvnoBTbxwLNv/7XP08NDQ11vvPuP78i8fGnIfTV+c4vT/3/jz985d33X3n3/Z99/CWn+trZsXrH7tGj8IGj56SnnTt6gJG+Dp1Ch04dYg4dLRxWWhZ+dEr1sqcOaZ+uOid6utJI27SyL+yFlJMSfiPiG8V/l8LjU4cOHDp0gGGYA0ePHtL8TYr/lUr7NVVvXv47a1/I6Jz6nsB+0WJ9VJNfE3vdU4ekpueOHlDejOobwvsk9ibxN/303ZN/98FX3Jftf/eTtk+lQ22v/uSkxM/bZTe+/OBU4fipD7/UH8Se/m77hz/XtuQ4jvv09KvvfhHCv/54Gj236b8Hzk3NzMzMzc0txtqDe5uCe5t6X2u66J9ZX19Pnthz6fU9376+Z/D1PUOv/+1/AtN6h+5EyN0YAAAAAElFTkSuQmCC" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAeIAAABICAIAAACle2HIAAAQtUlEQVR4nO2dP28iv/PHeQ5IKaJUPClaChRFeRQRDXQJIqIkFaJZInRpuIIu0hYhrIRASpF0kYAtos+Vp9Odf8Xa67E9Xrx/WMj3Ny+lAOOd9cya947Hy12FEQRBECdM5dgDIAiCIJIgmSYIgjhpMsr0fwRBEEQpUDZNEARx0pBMEwRBnDQk0wRBECdNbpnesPoNawdFjOWgNgmCIL4nJNMZGd2yyg2r3LDRRjRtWP3GaGSsHTXesg1mhyAIIhlFpn/9+uX7/r9//441mm/E6FbRYsZYO761bFj9hvnwsw2rk0wTBJEJRaYXi0Wv1/v58+ffv3/3HtkWmaMto6w/IY1xjty+YaMnvWcKm5Yh+eZry+FtY0j+AxsFonOsqpbDdZkO5CGbJ8UsN0IyTRBEJvSix3w+7/V6P378+PPnj6MJKFhmjskiReYCxuridfuGVR5EoyFhe22ioDKNHj66RXr6D1Jq/Qeus7aza+2bJ+5OZGT0QDJNEEQxILXp1WrV6/U8z/v9+7eLCShYUSKp5LyBkGPGGJA/PPN1tGkBtYkcDhJkmLn7D0hB3HZ2U6brT2x0y3vqpkimCYLISsEyHRFJG1fn3DKN2LSQYFM53CKaqEzbzo4UPUChY3RLMk0QRDEUXPSQxMIECh1a0SOVTCs2IwK9BNwGeXHFsAkPb2NPkiTItHl2dAuRtwTGcx0k0wRBZCX7FmIMFCx8DzBAGt1lGrfJEJnegD3J2ObebUmzHg2xnR25kQCbCXcIgiCIVBTwQJ4psvk5hM1icd/YZIxkmiCI7GT9eQtIkAv7HcohbB4M5OctFujnLQRB5IH+TQ+CIIiThmSaIAjipCGZJgiCOGlIpgmCIE4akmmCIIiTplyZXrRqtYYXlnrOBLbjQafqLY89jP8ZKJ4EcQjyyfSiVeMI8Q29RoIOL1q1WmuR8UzuB4Zeo1aDZ3rxOndrs58hK+uho8psZ/1qt8P/BtOt68gykcr3QtnO+s2Zu3NOMm216Rx8lM37dSW4qLy9yqbP+0pwwf+WE/E45G60FI3BfeLD+bJn/X2XeWAlgPj+NanHvsP270E4uXy+egzZbnV15k/ssd89+lePJ5P1cdDBR0qZOUXNIdNQcxctPoQDSUpsP1Pf7XjQHzsc7a5KQPeXd10n45lJ43vBWG5vB7H54nXS3BIgu9Hyov6+898UPd28X5vyCvrsRsuL9ucem4wxxl7bwfXoK9PQDg7uO+C1vedudIJ89CKBmwfnl6uEO+S8+9yblzcsN6yDT05hE8ks05p4cHkOvUbD81pqhs1A2g01nCe92l1GZuithdLJ7IpiBiOcNrvDF7XXi4ckwi9e5242bUY5sszstuMBT5yFjgDdXw+r3DjQ63DajCyH0+Zg+iJSb0WeQq+xb2lh8T30Gg1vEX8W2QDXQ4kAHmQ3tuNBfzwbGoM3A4LHk4UimPIjxKayNNGMOERJsBstFTH130xtBdL8NakniO/XpK4k4OllGvHd0ojFk7Fcvsds3q9TZ9O2SWsOfj1szqZ33U51MB17narMV/J5tFtdXa52SrIcTi6fz8/EX/dDNPqTxyBqlHq9W13FPSOh3K2uLlfzR39/T7VRpuqpbOqDj50vPZvWsmYxhEUr1oPQa4gui1b0Ag4UynxsLPQaqJqkyNHBaQXmajqcjtemfC/vuh2guYb4Ko1ivsaWY2mGZ4xmtrdkZqpu83W/79GNTA2pFto48EiQ3VneIYPHAmKNJ7iZ8UChNoEpDdcoRbIL08bXNrrql5WQxBzz8x7USTJk0zbfExu1IGT3XRY9spRr8EmLDH4761e7/XG4vOt2mrOlyF2K8MiGEEHGGGMfPSHZQBNFMssYmwdc0CORdekZSb8eM3ebCeQpNGSUaf3OwIeg1J6NYQEF1fJE2YpeRMf7ELhHQKylDCis0Vs+vWSNVUv0eGYhDtzO+lKmwc1AnlHm2lkLCMjiAJvrINjxEXiQ3VEHH3mEB4SfWIknDLstIPK6aNciA4qwQl7bQVzciMrN9/7nfSVIqHgwxpj/doGVtp1Afbc1WuPpjtV35r+lr01jkxYdPL+C62F1MN0KRS7GI5yPHiwjzIPzsyDKYuddnvlCxZSv1Z5R5ov3ZGzefY47m58m29zDopXla8hYQTIt9FdpNUuqQErQO4tVjVPch8yu2/EAnyu6fK+HVW86HsC1G66tUp2BuKh5hzm5Xevj+x3CogFCJ2+VOfcJ0MEn3Gy0eKrl+30Bybd/yJJW97IgAAu47tUAtMadDOr7vsbsJPiSoeix77rHg+ef8v7iu3CI/QzGGGMfPat6yhQYKOZH78xU5D09wblkGcTdZhK5vo3ZZbqWqAvIMx1QhZHSBLNuluGdcVCZjqeasqwW82k5VpIdRdaVfBkcaK4EhbUtFHp1cmurPyefTN/Rm5lwO0qgZQ3bcg6nByPRwaMBUfvzeKoBMZcUSkBwsymKs8y2h+a/xbkw3DOEO4S8RLDv8IhUoUMngxIQazyL8D3yCywasl93zCP+Kf9oPZTrg9weGegazXT11BLbqJaNKjLaUzeezWYC+XKmzFuIYEUNVtsJS2xNNOROIZw55hN+quF9nmLB4LtbxvpLrM6iiQiSu3Da7Cq5g1jBxSURLN1ex9tiWF1bL7A4T1nDd/x6i8C1FvBzPMhuX1c1IHLwZkDEAUo8QUBm8eE2m3B7Ku3NDD5gF1ecQaPlET1F13SZlocbhRG3R//lZNiOBwkBYdZ4FuK7Xn93Gbxl0poe8U/52+2sb//KuHuEou4f8iQX5LCwYD2PdxTDyWWknqCyjPZ8lI3zrjyRzK/dbdpdyLF/yEr8eUv2R6ZTkDMY/1/Iv5OThoQE/PtRROiOFpByr/t3Yffoi/3Dg5FXmA4r0zC/LuUXGsYPWwgNyz5r4chHsg7+85+yyBe6IwekrOv+XQAZ+v5cOA85f9gSQf+mB0EQxElDMk0QBHHSZJTp/wiCIIhSoGyaIAjipCGZJgiCOGlIpgmCIE6a3DK9YfUb1g6KGMtBbRIEQXxPSKYzMrpllRtWuWGjjd6ojbx9wyo3rHLLUv3rPQRBEBGKTP/69cv3/X///h1rNN+I0a0i0HHL6Ba7wWxYnWSaIIhMKDK9WCx6vd7Pnz///v2790ieJGoZ5YbVRWP9CWmMJax9w0ZPes8UNi1D8s3XlsPbxpD8BzYKROdYVS2HmzIdt5NMEwRRIHrRYz6f93q9Hz9+/Pnzx9EEFCxUvNqx5m5YXbxu37DKg2g0JGyvTRRUptHDR7dIT/9BqrP/wNU2QY5JpgmCKAGkNr1arXq9nud5v3//djEBBWvzZOS8gZBjxhiQPzzzdbRpAbWJHA4SZJi5x2OD2M5OMk0QRDkULNMRkbRxdc4t04hNCwk2lcMtoonKtO3sJNMEQZRDwUUPSSxMoNChFT1SybRiMyLQH6tog7y4YtiEh7exJ0kSZNo8O8k0QRDlkH0LMQYKFr4HGCCN7jKN22SITG/AnmRsc++2pFmPhtjOjj7pAQspikck0wRBZKWAB/JMkc3PIWwWi/vGJmMk0wRBZCfrz1tAglzY71AOYfNgoD9vQaGftxAEkQf6Nz0IgiBOGpJpgiCIk4ZkmiAI4qQhmSYIgjhpSKYJgiBOmnJletE6qf+EfjsedKre8tjD+N+GgkyUTzi5fD7vfhTa84jkk+lFq8YR4ht6jQQdXrRqtdYi45ncDwy9Rq0Gz/Tide7WZj9DQdZDR0HZzvrVbof/DaZb15FlJQ504k0uVZAys531mzN3j51k2mrT+YqgbN6vK8FF5e0VtO1Gy4tKEP3dxw/n+2+iUels8Hkvjr2oLCen/Iilu+/fhHBy+Xz1GLLd6urMn+x467z73JvjnbPKNHqi6Bt4rBwzh0xDzV20uAcHUorYfqa+2/GgP3Y42l2AgO4v77pOxrMTeg2noCbfIgvDcs87iM0Xr5PmlgDZjZYX9fed/3ZRf9/FreDtbrS8aH/yRqG5shFl834NrZ0qKXz/Pnz0ItGcB+eXK+FVOLmUkn3IEzFW2hcMIbNMa2LI5Tn0Gg3PaxmZX5wNQrnhSa92k5IZemuhdHJIJ7lVrU84bXaHL2qvFw9JhF+8zt1s2oxyZJnEbccDnjgLyQC6vx5WuXGg1+G0GVkOp83B9EWk3ooShV7DbWmBqDQMSuwsquagJ4gKHnk3tuNBfzwbGh6ZUcKDzEIRYfkRYlNZr2hGnEPH2G60vB59wbdCnr4m9eB69BW9EKnl530lSNIv/w1aSw/iu6URiydjRfueauToTDYHvx42Z9O7bqc6mI69TlUmMfk82q2uLlc7xnaP/tVjKBvPAi2Znnefz8+eNYVlu9XV2fP52fP52XN8uLWneSI+0O+WTWtZs/Bg0Yq/+kA1Fq3oBfQTynxsLPQaqHCkyNERsTIXzuF0vDble3nX7QDNNcRXaRRTM7YcSzM8YzSJvSUzU3Wbr5ovCpFjIHQwMEiQ0ImFRt6d5R3iERYla5DBHY5HD7UJTGk4hI4DJThCVi14++b9OqoM+G8XlbdX/y1Bpl/bgVttBMfme2KjFoRCfU8BPpORwW9n/Wq3Pw6Xd91Oc7YUCU0RHpnMA72ysVtN5qZ8Y0k33jOBcmqKKBllWv/+cw+U2rPhFVBQTYBkK3q9HG9j4B4BsZYyoLBGb/lMkuVULafjSYQ4cDvrS5kGNwN5RplrZ64V6M7D97bXMYuWtoKxRN4d1aPITTxK/HxKkOG1sEVJXiztAmXg816tIEfF2XsfZM3+20X787XN32oZqI24fwpQ322N1ni64+B7CrCZjA6eX8H1sDqYboUiF+ORgZHwxh/wjDhm3n0+R+XY6JmE+XUqiUJkWuiv0mqWiIFuozcmqxqnuI2ZXbfjAT4tdPleD6vedDyAyzRcW6U6Ax1RUwxzHrvWx3WM1YEaxfh1QgFbuX3lTAlQjxLuQFqQ1Zr+vijl2z9kIFOOgLVaJYmGRQ+njUFHNVdAfd/XmB0X393Zd93jwfNPeX/xBTnEfka014ftH9rk+6NnlDisQm9yxGQ6h0zDL75cjWMKIo9JrqPaNgpdt9C0IXDgrFJW0GLqLMdKXqPIupIvgwPNRZ+wtoVCr85jbaHn5pPhkGiI0mIkmRYlJtyKPZhOT0uiHqFRUvvzIKtRMtcZSpRwsymKs0zdQ4P7ZnyTjSm7gmqO/DWpBxfohiHYcoxIFTp0higBscazaN/TD57Ba4R5xD/lH62Hcn2Q2yPz4LiUMe8qmbJ4/ONjokvwR+/MsafOMVU6+xYiWDzDhM6+mtb0Qe4UwkliPuGnGt4XKCyWfCPLWGqJhVg050AeF06bXSVNEIu1uCSCpdvreAcMq2vrBZYU+4f6V0jEqLUIvYa0Ye7SwhDvjbzb11WNkvTIjJI4QAkyiNIsPtxmE25Ppb3DwSfP1GRZNAKdkhVnpRSgyzSwqaeibr8HkDNkOx4kBIRZ41m8746Dt8xk0yP+KX+7nfXt3yN3j6zwPcAzPafePfrnZ7LKEXfb29POEfcPWYk/b8n+yHQKjhvLA1CiQ3l2ctKTkIB/P4oI3dECUu51/64cWVkOK9Mwvy5lxWD8sOXbwj0pZ25YNl8LRz6SVcZvgkohX+iOHJCyrvu35rg/bImgf9ODIAjipCGZJgiCOGkyyvR/BEEQRClQNk0QBHHSZJTpWq1W7DgIgiAIlP8Dk37k5CcFzSIAAAAASUVORK5CYII=" alt="" />
java json 的生成和解析 --json-lib的更多相关文章
- java使用jackson生成和解析JSON
java使用jackson生成和解析JSON 1.导包 2.生成json和解析json package test; import com.fasterxml.jackson.core.JsonProc ...
- java中json数据生成和解析(复杂对象演示)
1.json简单介绍 1.1 json是最流行和广泛通用的数据传输格式,简称JavaScript Object Notation,最早在JavaScript中使用. 1.2 举个例子,下面是一个jso ...
- fastjson生成和解析json数据,序列化和反序列化数据
本文讲解2点: 1. fastjson生成和解析json数据 (举例:4种常用类型:JavaBean,List<JavaBean>,List<String>,List<M ...
- fastjson生成和解析json数据
本文讲解2点: 1. fastjson生成和解析json数据 (举例:4种常用类型:JavaBean,List<JavaBean>,List<String>,List<M ...
- 转:JS中生成和解析JSON
原文地址:JS中生成和解析JSON 1.JS中生成JSON对象的方法: var json = []; var row1 = {}; row1.id= "1"; row1.name ...
- QT json字符串生成和解析
1 QT json字符串生成和解析 1.1 QT Json解析流程 (1) 字符串转化为QJsonDocument QJsonParseError json_error; QJso ...
- JS中生成和解析JSON
1.JS中生成JSON对象的方法: var json = []; var row1 = {}; row1.id= "1"; row1.name = "jyy"; ...
- 通过js获取前台数据向一般处理程序传递Json数据,并解析Json数据,将前台传来的Json数据写入数据库表中
摘自:http://blog.csdn.net/mazhaojuan/article/details/8592015 通过js获取前台数据向一般处理程序传递Json数据,并解析Json数据,将前台传来 ...
- java分享第十三天(fastjson生成和解析json数据,序列化和反序列化数据)
fastjson简介:Fastjson是一个Java语言编写的高性能功能完善的JSON库.fastjson采用独创的算法,将parse的速度提升到极致,超过所有json库,包括曾经号称最快的jack ...
随机推荐
- NoSQL聚合数据模型
NoSQL聚合数据模型 特点 聚合数据模型的特点就是把经常访问的数据放在一起(聚合在一块): 这样带来的好处很明显,对于某个查询请求,能够在与数据库一次交互中将所有数据都取出来: 当然,以这种方式存储 ...
- Spark ML聚类分析之k-means||
今天更新了电脑上的spark环境,因为上次运行新的流水线的时候,有的一些包在1.6.1中并不支持 只需要更改系统中用户的环境变量即可 然后在eclipse中新建pydev工程,执行环境是python3 ...
- MongoDB资料汇总
MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. 它的特点是高性能.易部署.易使用,存储数据非常方便.主要功能特性有: 面向集合存 ...
- More Effective C++ (2)
接下来的是more effective c++ 11至20条款: 11.禁止异常信息(exceptions)传递到析构函数外.析构函数的调用情况可能有两种:(1)对象正常销毁 (2)异常传播过程中的栈 ...
- Oracle正则表达式函数:regexp_like、regexp_substr、regexp_instr、regexp_replace
Oracle正则表达式函数:regexp_like.regexp_substr.regexp_instr.regexp_replace --去掉所有特殊字符,只剩字母 SELECT REGEXP ...
- Java用通配符 获得泛型的协变和逆变
Java对应泛型的协变和逆变
- Object Pascal 方法与技巧
4 方法与技巧 4.1 设置代码模板 代码模板是Delphi 的代码感知特性的一种,通过它可以快速.高效和正确地输入代码.代码模板将一些常用的语句块保存在模板中,然后程序员只要在代码编辑器中按下“Ct ...
- [css] 【转载】 精简高效的CSS命名准则/方法
原文链接:http://www.zhangxinxu.com/wordpress/2010/09/%E7%B2%BE%E7%AE%80%E9%AB%98%E6%95%88%E7%9A%84css%E5 ...
- git命令之git rebase 的用法
rebase 假设你现在基于远程分支"origin",创建一个叫"mywork"的分支. $ git checkout -b mywork origin 现在我 ...
- mybatis实战
这篇教程不错,推荐:http://blog.csdn.net/techbirds_bao/article/details/9233599/