#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
inline LL read () { LL res = ;int f () ;char ch = getchar ();
while (!isdigit(ch)) { if (ch == '-') f = - ;ch = getchar();}
while (isdigit(ch)) res = (res << ) + (res << ) + (ch ^ ) ,ch = getchar(); return res * f ;
}
LL n;
LL a[<<];
signed main () {
n=read();
a[]=; a[]=;
for(register int i=;i<=n;i++) a[i]=((a[i - ] << )+(a[i - ])) % ;
cout << a[n] << endl ;
return ;
}

P4451 [国家集训队]整数的lqp拆分的更多相关文章

  1. BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分

    整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 , ...

  2. 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]

    传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...

  3. 洛谷P4451 [国家集训队]整数的lqp拆分(生成函数)

    题面 传送门 题解 我对生成函数一无所知 我们设\(F(x)\)为斐波那契数列的生成函数,\(G(x)\)为答案的生成函数,那么容易得到递推关系 \[g_n=\sum_{i=0}^{n-1}f_ig_ ...

  4. 洛谷 P4451 [国家集训队]整数的lqp拆分

    洛谷 这个题目是黑题,本来想打表的,但是表调不出来(我逊毙了)! 然后随便打了一个递推,凑出了样例, 竟然. 竟然.. 竟然... A了!!!!!!! 直接:\(f[i]=f[i-1]*2+f[i-2 ...

  5. Luogu4451 [国家集训队]整数的lqp拆分

    题目链接:洛谷 题目大意:求对于所有$n$的拆分$a_i$,使得$\sum_{i=1}^ma_i=n$,$\prod_{i=1}^mf_{a_i}$之和.其中$f_i$为斐波那契数列的第$i$项. 数 ...

  6. [国家集训队]整数的lqp拆分

    我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^ ...

  7. [国家集训队]整数的lqp拆分 数学推导 打表找规律

    题解: 考场上靠打表找规律切的题,不过严谨的数学推导才是本题精妙所在:求:$\sum\prod_{i=1}^{m}F_{a{i}}$ 设 $f(i)$ 为 $N=i$ 时的答案,$F_{i}$ 为斐波 ...

  8. P4451-[国家集训队]整数的lqp拆分【生成函数,特征方程】

    正题 题目链接:https://www.luogu.com.cn/problem/P4451 题目大意 给出\(n\),对于所有满足\(\sum_{i=1}^ma_i=n\)且\(\forall a_ ...

  9. [BZOJ2173]整数的lqp拆分

    [题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am ...

随机推荐

  1. HDU 1800 hash 找出现最多次数的字符串的次数

    乘法hash: 这类hash函数利用了乘法的不相关性 int Hash(char *str){    int seed = 131 , value=0;    while(*str != '\0'){ ...

  2. SOJ 3300_Stockholm Coins

    [题意]给n个数,求一个数,使这个数能且只能由(n个数每个至少出现一次)表示.输出满足条件的最小的数. [分析](完全背包)如果有满足条件的最小的数,那么这个数只能是这n个数的和total,通过记录每 ...

  3. [bzoj2982]combination_卢卡斯

    Combination bzoj-2982 题目大意:求$C_n^m/%10007$. 注释:$1\le n,m\le 2\cdot 10^9$. 想法:裸卢卡斯定理. 先处理出$mod$数之内的阶乘 ...

  4. select语句中会影响查询效率的因素

    1.没有创建索引,或者没有正确使用索引;2.存在死锁的情况,从而导致select语句挂起; 3.返回不必要的列,如很多人喜欢在程序中使用select * from 这样会查询表或视图中的所有字段,如果 ...

  5. Google搜索引擎用法

    Google搜索引擎用法 ★搜索引擎的选择 先简单说一下"搜索引擎的选择". 在咱们天朝,Google 屡屡被 GFW 骚扰,导致百度占了便宜,成为份额最高的搜索引擎.不过今天这篇 ...

  6. Mesos, Marathon, Docker 平台部署记录

    Mesos, Marathon, Docker 平台部署记录 所有组件部署基于Ubuntu 14.04 x64 主机 IP 角色 master 192.168.1.3 Mesos Master, Ma ...

  7. Linux下,PHP的SESSION不起作用的问题

    改动SESSION目录的权限就能够了. 先找到SESSION目录, 然后 chmod -R 777 /var/lib/php/session 假设没有此目录,则新建此目录 mkdir -R 777 / ...

  8. Memento - 备忘录模式

    定义 在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可将该对象恢复到原先保存的状态. 案例 比方如今有一个画图系统,我们在Viewer里面画了一些图形,可是在绘 ...

  9. chrome.socket

    chrome.socket https://chajian.baidu.com/developer/apps/socket.html#method-create 描述: 使用 chrome.socke ...

  10. spoj 1812 LCS2 - Longest Common Substring II (后缀自己主动机)

    spoj 1812 LCS2 - Longest Common Substring II 题意: 给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串. 限制: 1 < ...