仓鼠找sugar II
题目描述
小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n。地下洞穴是一个树形结构。这一天小仓鼠打算从从他的卧室(a,是任意的)他的基友卧室(b,还是任意的)。(注意,a有可能等于b。)然而小仓鼠学OI学傻了,不知道怎么怎么样才能最短的走到目的地。于是他只能随便乱走。当他在每一个节点时,等概率到这个点的母亲或者所有孩子节点(例如这个节点有一个母亲节点和两个子节点,那么下一步走到这3个节点的概率都是1/3)。一但走到了他基友的卧室,就会停下。
现在小仓鼠希望知道,他走到目的地时,走的步数的期望。这个期望本来是一个有理数,但是为了避免误差,我们要求对这个有理数取模,%998244353。
下面是“分数”模运算的定义:
b, m互质
k = a/b (mod m) <=> kb = a (mod m)
这里求 x = 1/17 (mod 2668)
<=>
17x = 1 (mod 2668)
<=>
17x = 2668k + 1 (k∈整数)
取合适的k使得17|(2668k+1) 这里刚好17 | (2668 + 1)
所以k = 1, x = (2668+1)/17 = 157
当然,当k = 1 + 17n 时,
x = (2668 + 17·n·2668 + 1)/17 = 157 + 2668n
也符合条件(n任意整数)
但如果限定 2668 > x > 0,x是唯一的。
小仓鼠那么弱,还要天天被JOHNKRAM大爷虐,请你快来救救他吧!
输入输出格式
输入格式:
第一行一个正整数n,表示这棵树节点的个数。
接下来n-1行,每行两个正整数u和v,表示节点u到节点v之间有一条边。
输出格式:
一个整数,表示取模后的答案。
输入输出样例
输入样例#1:
3
1 2
1 3
输出样例#1:
110916041
说明
对于30%的数据 n<=5;
对于50%的数据 n<=5000;
对于所有数据 n<=100000。
样例解释
期望是16/9
如果a在叶子 b在根,E1=1。有2种情况。
如果a在根,b在叶子。E2=1/2+31/4+51/8...=3。有2种情况。
如果a和b都在不同的叶子,E3=E2+1。有2种情况。
如果a=b,E4=0,有3种情况。
所以期望是16/9,有理数取模后就是输出。
题解
期望
可以考虑把每条边的贡献拆成两部分
一部分是\(f[u]\)表示从u走到ta的父亲的期望距离
另一部分是\(g[u]\)表示从u的父亲走到u的期望距离
然后就可以求出从u走到父亲的期望\(f[u] = \frac{1}{d[u]} * 1 + \frac{1}{d[u]} * \sum_{son[u]}{(1 + f_{son[u]} + f[u])}\)
然后两遍同时乘\(d[u]\)
移一下项\(f[u] = d[u] + \sum_{son[u]}{f_{son[u]}}\)
然后再求出从v的父亲u走到v的期望\(g[v] = \frac{1}{d[u]} * 1 + \frac{1}{d[u]} * (1 + g[u] + g[v]) + \frac{1}{d[u]} * \sum_{son[u]≠v}{(1 + f_{son[u]} + g[v])}\)
同时乘\(d[u]\)然后移项得\(g[v]=g[u]+\sum_{son[u]≠v}{f_{son[u]}}+d[u]\)
这样求出\(f[]\)和\(g[]\)以后再Dfs一遍统计答案
对于一个点,ta对答案的贡献是ta的子树内的每个节点全部到外面的任意一个节点去然后外面的任意一个节点到子树里的任意一个节点来的期望
即\(size[u] * (n-size[u]) * (f[u]+g[u])\)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define int long long
const int M = 100005 ;
const int mod = 998244353 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n ;
int hea[M] , num ;
int d[M] , size[M] ;
int f[M] , g[M] , t[M] , Ans ;
struct E {
int Nxt , to ;
} edge[M << 1] ;
inline void add_edge(int from , int to) {
edge[++num].Nxt = hea[from] ;
edge[num].to = to ;
hea[from] = num ;
}
void exgcd(int a , int b , int &x , int &y) {
if(b == 0) { x = 1 , y = 0 ; return ; }
exgcd(b , a % b , x , y) ;
int tmp = x ; x = y ; y = tmp - a / b * y ;
}
inline int inv(int a) {
int x , y ; exgcd(a , mod , x , y) ;
return (x + mod) % mod ;
}
void Dfs1(int u , int father) {
f[u] = d[u] ;
for(int i = hea[u] ; i ; i = edge[i].Nxt) {
int v = edge[i].to ;
if(v == father) continue ;
Dfs1(v , u) ;
f[u] += f[v] ;
}
}
void Dfs2(int u , int father) {
int ret = 0 ;
for(int i = hea[u] ; i ; i = edge[i].Nxt) {
int v = edge[i].to ;
if(v == father) continue ;
ret += f[v] ;
}
for(int i = hea[u] ; i ; i = edge[i].Nxt) {
int v = edge[i].to ;
if(v == father) continue ;
g[v] = (g[u] + ret - f[v] + d[u]) % mod ;
Dfs2(v , u) ;
}
}
void query(int u , int father) {
size[u] = 1 ;
for(int i = hea[u] ; i ; i = edge[i].Nxt) {
int v = edge[i].to ;
if(v == father) continue ;
query(v , u) ;
size[u] += size[v] ;
}
Ans = (Ans + size[u] * (n - size[u]) * (f[u] + g[u]) + mod) % mod ;
}
# undef int
int main() {
# define int long long
n = read() ;
for(int i = 1 , u , v ; i < n ; i ++) {
u = read() , v = read() ;
add_edge(u , v) ; add_edge(v , u) ;
++d[u] ; ++d[v] ;
}
Dfs1(1 , 1) ; Dfs2(1 , 1) ; query(1 , 1) ;
printf("%lld\n",(Ans * inv(n * n)) % mod) ;
return 0 ;
}
仓鼠找sugar II的更多相关文章
- Luogu P3412 仓鼠找$sugar$ $II$
Luogu P3412 仓鼠找\(sugar\) \(II\) 题目大意: 给定一棵\(n\)个点的树, 仓鼠每次移动都会等概率选择一个与当前点相邻的点,并移动到此点. 现在随机生成一个起点.一个终点 ...
- 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)
洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...
- luogu P3412 仓鼠找sugar II 期望 树形dp
LINK:仓鼠找sugar II 以前做过类似的期望题目 加上最后的树形dp不算太难 还是可以推出来的. 容易发现 当固定起点和终点的时候 可以先固定根 这样就不用分到底是正着走还是倒着走了. 1为根 ...
- [luogu3412]仓鼠找sugar II
题面在这里 题意 给定一棵树(\(n\le10^5\)),仓鼠随机选择起点和终点,之后从起点开始随机游走,每次都会等概率地选择和其相邻的任一道路,直到到达终点,求到达终点时步数的期望 sol 因为这一 ...
- P3412 仓鼠找sugar II
思路 挺神的概率期望.. 好吧是我太弱了,完全没有往那里想 注意期望是具有线性性的,一条路径的期望可以变成每条边的期望求和 概率是某件事发生的可能性,期望是某件事确定发生的代价 首先没有终点的条件并不 ...
- P3398 仓鼠找sugar
P3398 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...
- 【Luogu3398】仓鼠找sugar(树链剖分)
[Luogu3398]仓鼠找sugar(树链剖分) 题面 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他 ...
- 洛谷P3398 仓鼠找sugar [LCA]
题目传送门 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...
- 【洛谷】【lca+结论】P3398 仓鼠找sugar
[题目描述:] 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室 ...
随机推荐
- hdu 4465 求期望(C(m,n)太大用log优化)
/* 坑啊 数学函数的运用log处理,exp还原 tle好长时间,一直用g++交,最后把别人正确的代码交上也是tle,用c++交一遍ac 题意:有两个数量为n的糖果,一个人开始吃,吃到最后有一堆剩余为 ...
- 特种部队(codevs 1427)
题目描述 Description 某特种部队接到一个任务,需要潜入一个仓库.该部队士兵分为两路,第一路士兵已经在正面牵制住了敌人,第二路士兵正在悄悄地从后方秘密潜入敌人的仓库.当他们到达仓库时候,发现 ...
- 2018/2/17 SpringCloud的一个简单小介绍
在学习SpringCloud之前,我以为SpringCloud是与Double一样,只是个单纯的RPC框架.但在今天的学习中,我发现并非如此,事实上,SpringCloud是多个框架的集合,感觉Spr ...
- 自己打断点走的struts流程&拦截器工作原理
①. 请求发送给 StrutsPrepareAndExecuteFilter ②. StrutsPrepareAndExecuteFilter 判定该请求是否是一个 Struts2 请 求(Actio ...
- P1160 队列安排 洛谷
https://www.luogu.org/problem/show?pid=1160 题目描述 一个学校里老师要将班上N个同学排成一列,同学被编号为1-N,他采取如下的方法: 1.先将1号同学安排进 ...
- java基础标识符,关键字,常量
1关键字1.1关键字的概述Java的关键字对java的编译器有特殊的意义,他们用来表示一种数据类型,或者表示程序的结构等,关键字不能用作变量名.方法名.类名.包名.2标识符2.1什么是标识符就是程序员 ...
- Spring基础入门(三)
一.Spring的jdbcTemplate操作 (1)Spring是一站式框架,对于javaee三层,每一层都有解决技术. web层:springMVC service:spring的ioc dao层 ...
- SHARP 加粉
http://v.ku6.com/show/7ufwm7pqfF8D_f13IdCaag...html
- swift container server 莫名stuck
openstack swift container server的进程经常莫名其妙进入 D Ds等状态 记录一下这个时候 storage.error的log 便于分析 一种情形是下面这种log Jun ...
- 【剑指Offer面试题】 九度OJ1385:重建二叉树
题目链接地址: pid=1385">http://ac.jobdu.com/problem.php?pid=1385 题目1385:重建二叉树 时间限制:1 秒内存限制:32 兆特殊判 ...