接着(一)start

(二)广度优先搜索(BFS)

广度优先搜索(又称宽度优先搜索算法)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。   Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。

广搜的核心思想就是:从初始结点开始,产生第一层节点,检查目标结点是否在这些后继结点之中,没有,就扩展第一层节点,若没有,用产生式规则得到第二层节点;检查目标结点是否在这些后继结点之中,没有,就扩展第 二层节点……像这样以此扩展节点、检查,直到发现目标结点为止。

优点:
找到的第一个解一定是最优解
缺点:
占用空间比较大

经典题:八数码问题、

在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。
给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。

伪代码:

初始状态加入队列
while 队列非空
获取当前队首状态
for 当前状态可能的下一状态st
if 该状态之前未被搜索到
if 该状态为目标状态
输出并退出
else
加入队尾

如何判重:

如何判断某一状态之前是否出现过?
将状态转换为一个数字(Hash)
举例
abac(字符串)转化为数字
0 * 26^3 + 1 * 26^2 + 0 * 26 + 2
矩阵转化为数字

具体代码实现:

#include<stdio.h>

struct node
{
int xy[][];
int dir;
};
struct node sh[], end;
int count = ; void init()
{
printf("输入起始节点的位置:\n");
int i, j;
for (i = ; i < ; i++)
for (j = ; j < ; j++)
scanf("%d", &sh[].xy[i][j]);
sh[].dir = -;
printf("输入目标节点的位置:\n");
for (i = ; i < ; i++)
for (j = ; j < ; j++)
scanf("%d", &sh[].xy[i][j]);
sh[].dir = -;
} //找出0的位置
int loction(int num)
{
int i;
for (i = ; i < ; i++)
if (sh[num].xy[i / ][i % ] == ) return i;
} //进行标记
long long sign(int num)
{
long long sum;
sum = sh[num].xy[][]* + sh[num].xy[][]* + sh[num].xy[][]* + sh[num].xy[][]* + sh[num].xy[][]* + sh[num].xy[][]* + sh[num].xy[][]* + sh[num].xy[][]* + sh[num].xy[][];
return sum;
} void mobile(int num)
{ int temp;
int loc;
int up = , down = , left = , right = ;
loc = loction(num);
int stand = sh[num].dir;
//dir的0 1 2 3分别代表左 上 右 下
if (loc / != && stand != )
{
sh[count] = sh[num];
temp = sh[count].xy[loc / ][loc % ];
sh[count].xy[loc / ][loc % ] = sh[count].xy[loc / - ][loc % ];
sh[count].xy[loc / - ][loc % ] = temp;
sh[count].dir = ;
count++;
};
if (loc / != && stand != )
{
sh[count] = sh[num];
temp = sh[count].xy[loc / ][loc % ];
sh[count].xy[loc / ][loc % ] = sh[count].xy[loc / + ][loc % ];
sh[count].xy[loc / + ][loc % ] = temp;
sh[count].dir = ;
count++;
}
if (loc % != && stand != )
{
sh[count] = sh[num];
temp = sh[count].xy[loc / ][loc % ];
sh[count].xy[loc / ][loc % ] = sh[count].xy[loc / ][loc % - ];
sh[count].xy[loc / ][loc % - ] = temp;
sh[count].dir = ;
count++;
}
if (loc % != && stand != )
{
sh[count] = sh[num];
temp = sh[count].xy[loc / ][loc % ];
sh[count].xy[loc / ][loc % ] = sh[count].xy[loc / ][loc % + ];
sh[count].xy[loc / ][loc % + ] = temp;
sh[count].dir = ;
count++;
} }
void display(int num)
{
int i, j;
for (i = ; i < ; i++)
{
for (j = ; j < ; j++)
printf("%d ", sh[num].xy[i][j]);
printf("\n");
}
} int search()
{
int i = ;
while ()
{
printf("\n");
display(i);
printf("\n");
if (i == )
{
printf("超出了上限次数\n");
return ;
}
if (sign(i) == sign())
{
printf("在第%d次找到了", i);
display(i);
return i;
}
mobile(i);
i++;
}
} int main()
{
init();
search();
return ;
}

未完.....

万能的搜索--之BFS(三)的更多相关文章

  1. 层层递进——宽度优先搜索(BFS)

    问题引入 我们接着上次“解救小哈”的问题继续探索,不过这次是用宽度优先搜索(BFS). 注:问题来源可以点击这里 http://www.cnblogs.com/OctoptusLian/p/74296 ...

  2. Leetcode之广度优先搜索(BFS)专题-详解429. N叉树的层序遍历(N-ary Tree Level Order Traversal)

    Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ary Tree Level Order Traversal) 给定一个 N 叉树,返回其节点值的层序遍历. (即从左到右 ...

  3. Leetcode之广度优先搜索(BFS)专题-994. 腐烂的橘子(Rotting Oranges)

    Leetcode之广度优先搜索(BFS)专题-994. 腐烂的橘子(Rotting Oranges) BFS入门详解:Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ar ...

  4. Leetcode之广度优先搜索(BFS)专题-133. 克隆图(Clone Graph)

    Leetcode之广度优先搜索(BFS)专题-133. 克隆图(Clone Graph) BFS入门详解:Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ary Tree ...

  5. 深度优先搜索(DFS)与广度优先搜索(BFS)的Java实现

    1.基础部分 在图中实现最基本的操作之一就是搜索从一个指定顶点可以到达哪些顶点,比如从武汉出发的高铁可以到达哪些城市,一些城市可以直达,一些城市不能直达.现在有一份全国高铁模拟图,要从某个城市(顶点) ...

  6. 深度优先搜索(DFS)和广度优先搜索(BFS)

    深度优先搜索(DFS) 广度优先搜索(BFS) 1.介绍 广度优先搜索(BFS)是图的另一种遍历方式,与DFS相对,是以广度优先进行搜索.简言之就是先访问图的顶点,然后广度优先访问其邻接点,然后再依次 ...

  7. 队列的JS实现及广度优先搜索(BFS)的实现

    队列是先进先出(FIFO)的数据结构,插入操作叫做入队,只能添加在队列的末尾:删除操作叫做出队,只能移除第一个元素.在JS中,用数组可以很简单的实现队列.JavaScript实现排序算法 functi ...

  8. Z1. 广度优先搜索(BFS)解题思路

    /** BFS 解题思路 特点:从某些特定的节点开始,感染相邻的节点; 被感染的节点,再感染其相邻的节点,以此类推. 题目常见于数据结构包括 二维数组.树.图 **/ /** 1). 二维数组特定节点 ...

  9. Leetcode之广度优先搜索(BFS)专题-773. 滑动谜题(Sliding Puzzle)

    Leetcode之广度优先搜索(BFS)专题-773. 滑动谜题(Sliding Puzzle) BFS入门详解:Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ary ...

随机推荐

  1. 51nod 1247 可能的路径(gcd)

    传送门 题意 略 分析 有以下结论 \(1.(x,y)->(y,x)\) \(2.(x,y)->(a,b)==>(a,b)->(x,y)\) 证明 做如下变换 \((a,b)- ...

  2. Codeforces Round #421 (Div. 2)B. Mister B and Angle in Polygon(模拟+精度控制)

    传送门 题意 给出正n多边形和一个数a,寻找与a最接近的角,输出角编号 分析 找出多边形上所有角,一一比对即可 trick 1.判断的时候注意精度,i.e.x-eps>0 2.double与do ...

  3. noip 2012 Day2 T2 借教室

    一.暴力简述 甩链接.jpeg 首先我们不难看出,这道题————并不是一道多难的题,因为显然,第一眼看题目时便很容易地想到暴力如何打:枚举每一种订单,然后针对每一种订单,对区间内的每一天进行修改(做减 ...

  4. P1219 最优贸易

    C国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市. 任意两个城市之间最多只有一条道路直接相连. 这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的 ...

  5. codeforces 149D Coloring Brackets (区间DP + dfs)

    题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...

  6. Codeforces Round #418 (Div. 2) C

    Description Nadeko's birthday is approaching! As she decorated the room for the party, a long garlan ...

  7. 线段树(单点更新) POJ 2828 Buy tickets

    题目传送门 /* 结点存储下面有几个空位 每次从根结点往下找找到该插入的位置, 同时更新每个节点的值 */ #include <cstdio> #define lson l, m, rt ...

  8. IOS-关闭(退)键盘事件--转

    方法: 1.手势(触背景)关闭键盘 -(void)tapBackground //在ViewDidLoad中调用{    UITapGestureRecognizer * tap = [[UITapG ...

  9. azkaban web ui界面出现异常诡异“丑”界面的问题解决(图文详解)

    前期博客 启动azkaban时出现User xml file conf/azkaban-users.xml doesn't exist问题解决(图文详解) 问题详情 [hadoop@master co ...

  10. JavaScript中函数是不能重载原因

    以前有一次写JS插件的时候,由于后台写习惯了,妄想在JS中写重载函数,可惜不能成功,原因花了一点时间记了下来 首先要理解重载的含义:函数返回值不同或者形式参数个数不同但函数名相同的函数 JavasSc ...