数论(GCD) HDOJ 4320 Arcane Numbers 1
题意:有一个A进制的有限小数,问能否转换成B进制的有限小数
分析:0.123在A进制下表示成:1/A + 2/(A^2) + 3 / (A^3),转换成B进制就是不断的乘B直到为0,即(1/A + 2/(A^2) + 3 / (A^3)) * (B^m)。那么(B^m) 一定要能整除(A^n),转换一下就是A的质因子B都有,可以用GCD高效计算
收获:数论题做不来可以找找规律,想想会用什么知识求解
代码:
/************************************************
* Author :Running_Time!
* Created Time :2015-8-25 8:49:59
* File Name :A.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int MAXN = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7; ll GCD(ll a, ll b) {
return b == 0 ? a : GCD (b, a % b);
} int main(){
int T, cas = 0; scanf ("%d", &T);
ll A, B, C;
while (T--) {
scanf ("%I64d%I64d", &A, &B);
while ((C = GCD (A, B)) != 1) A /= C;
printf ("Case #%d: %s\n", ++cas, A == 1 ? "YES" : "NO");
} return 0;
}
数论(GCD) HDOJ 4320 Arcane Numbers 1的更多相关文章
- HDU 4320 Arcane Numbers 1 (数论)
A - Arcane Numbers 1 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- HDU 4320 Arcane Numbers 1(质因子包含)
http://acm.hdu.edu.cn/showproblem.php?pid=4320 题意: 给出A,B,判断在A进制下的有限小数能否转换成B进制下的有限小数. 思路: 这位博主讲得挺不错的h ...
- HDU 4320 Arcane Numbers 1 (质因子分解)
题目:传送门. 题意:将一个A进制下的有限小数转化为B进制看是否仍为有限小数. 题解:一个A进制的小数可以下次 左移动n位变成A进制整数然后再将其转化为B进制即可 即B^m/A^n要整除,因此A的质因 ...
- 2012 #3 Arcane Numbers
Arcane Numbers 1 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Su ...
- Arcane Numbers 1
Vance and Shackler like playing games. One day, they are playing a game called "arcane numbers& ...
- 找规律/数位DP HDOJ 4722 Good Numbers
题目传送门 /* 找规律/数位DP:我做的时候差一点做出来了,只是不知道最后的 is_one () http://www.cnblogs.com/crazyapple/p/3315436.html 数 ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- hdu 5505(数论-gcd的应用)
GT and numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- CF1025B Weakened Common Divisor【数论/GCD/思维】
#include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...
随机推荐
- 常见machine learning模型实现
一.感知机模型 二.线性回归(Linear Regression) from numpy import * def loadData(filename): x = [] y = [] f = open ...
- 多硬盘分区管理fdisk
原文:http://blog.fens.me/linux-fdisk/ ---------------------------------------------------------------- ...
- How to Uninstall Internet Explorer 11 for Windows 7
Internet Explorer 11 is the newest version of Microsoft's web browser, but not everyone is a fan. If ...
- Binder IPC的权限控制
PS:个人理解:当进程1通过Binder调用组件2时,会将进程1的pid及uid赋给组件2,并检测进程1的pid及uid是否有权限调用组件2.而后组件2需要调用组件3,此时组件2保存的pid及uid为 ...
- Android数据与服务器交互的GET,POST,HTTPGET,HTTPPOST的使用
Android有这几种方式,可以提交数据到服务器,他们是怎么使用的呢,这里我们来探讨一下. 这里的例子用的都是提交客户端的用户名及密码,同时本节用到的StreamTools.readInputStre ...
- struts2 中 result type="stream"
Stream result type是Struts2中比较有用的一个feature.特别是在动态生成图片和文档下载的情况下 1:图片验证码: Action类,action主要要提供一个获取InputS ...
- js加减乘除丢失精度
js加减乘除(学了那么久现在才注意到汗==!) /** ** 除法函数,用来得到精确的除法结果 ** 说明:javascript的除法结果会有误差,在两个浮点数相除的时候会比较明显.这个函数返回较为精 ...
- Entity FramWork Code first 使用心得
1 最有用的命令 update-database -force -verbose 2 主键如果不是默认的int或者 bigint而是guid 或者 string类型,创建记录的时候要给主键赋值 3 在 ...
- 搭建基于Maven的SSM框架
先展示文件结构图对工程结构有大致了解: 主要为 ssm-parent (用来管理jar包版本)是每个工程的父工程,ssm-common(用来处理底层数据),ssm-manager(对数据库信息进行操 ...
- mysql05---游标
drop procedure p12$ //删除存储过程 //游标cursor,一条sql对应n条资源,取出资源的接口/句柄就是cursor, 一条sql产生的n条结果不是一次性全部输出,而是返回一个 ...