3884: 上帝与集合的正确用法

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 4142  Solved: 1907
[Submit][Status][Discuss]

Description

 
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
 
一句话题意:

Input

 
接下来T行,每行一个正整数p,代表你需要取模的值

Output

T行,每行一个正整数,为答案对p取模后的值

Sample Input

3
2
3
6

Sample Output

0
1
4

HINT

对于100%的数据,T<=1000,p<=10^7

欧拉定理 

    (a , p)  互质

拓展欧拉定理(降幂)

 第二个式子不能合并到第三个

定理证明 不会..


解析   由于是2的无限次幂 所以每一层指数肯定大于对应的p   所以直接拓展欧拉定理第三个公式 递归求解phi(phi(phi(...))))  直到等于1  回朔的时候快速幂求解

复杂度 O(T*log(p)*sqtr(p)) 看起来很大 但是实际上上界是很松的,反正过了。据说打表会超时。

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
using namespace std;
typedef long long ll;
const int maxn=1e5+,maxm=,inf=0x3f3f3f3f;
ll poww(ll n,ll m,ll mod)
{
ll ans = ;
while(m > )
{
if(m & )ans = (ans * n) % mod;
m = m >> ;
n = (n * n) % mod;
}
return ans;
}
ll phi(ll n) //返回euler(n)
{
ll res=n,a=n;
for(ll i=; i*i<=a; i++)
{
if(a%i==)
{
res=res/i*(i-);//先进行除法是为了防止中间数据的溢出 爆int
while(a%i==)
a/=i;
}
}
if(a>)
res=res/a*(a-);
return res;
}
ll dfs(ll p)
{
if(p==)return ;
ll x=phi(p);
return poww(,dfs(x)+x,p);
}
int main()
{
int t,p;
scanf("%d",&t);
while(t--)
{
scanf("%d",&p);
printf("%lld\n",dfs(p));
}
}

BZOJ 3884 拓展欧拉定理的更多相关文章

  1. bzoj 3884 欧拉定理

    求$$2^{2^{2^{2^{…}}}} mod n$$的值,其中n有1e7. 老实说这题挺有趣的,关键是怎么化掉指数,由于是取模意义下的无限个指数,所以使用欧拉定理一定是可以把指数变为不大于$\va ...

  2. BZOJ 5394 [Ynoi2016]炸脖龙 (线段树+拓展欧拉定理)

    题目大意:给你一个序列,需要支持区间修改,以及查询一段区间$a_{i}^{a_{i+1}^{a_{i+2}...}}mod\;p$的值,每次询问的$p$的值不同 对于区间修改,由线段树完成,没什么好说 ...

  3. Luogu4139 上帝与集合的正确用法 拓展欧拉定理

    传送门 题意:求$2^{2^{2^{2^{...}}}} \mod p$的值.$p \leq 10^7$ 最开始想到的是$x \equiv x^2 \mod p$,然后发现不会做... 我们可以想到拓 ...

  4. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  5. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  6. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

  7. BZOJ 3884 欧拉定理 无穷幂取模

    详见PoPoQQQ的博客.. #include <iostream> #include <cstring> #include <cstdio> #include & ...

  8. BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  9. [BZOJ 3884][欧拉定理]上帝与集合的正确使用方法

    看看我们机房某畸形写的题解:http://blog.csdn.net/sinat_27410769/article/details/46754209 此题为popoQQQ神犇所出,在此orz #inc ...

随机推荐

  1. DDR SDRAM

    DDR SDRAM(Double Data Rate SDRAM)是一种高速CMOS.动态随机访问存储器, 它采用双倍数据速率结构来完成高速操作.应用在高速信号处理系统中, 需要缓存高速.大量的数据的 ...

  2. array_keys

    <?php$array = array(0 => 100, "color" => "red");print_r(array_keys($arr ...

  3. whereis参数

    -b  只找二进制文件 -m 只找在帮助文件manual路径下的文件 -s 只找原文件 -u 没有帮助文件的文件 whereis passwd

  4. Sql Server数据库对象访问权限控制

    以下内容主要针对database层面的数据访问权限(比如select, insert, update, delete, execute…) 1.直接给user权限GRANT EXECUTE TO [u ...

  5. NPM、nodeJS安装,grunt自动化构建工具学习总结

    一:安装 npm是随nodeJs安装包一起安装的包管理工具,能解决NodeJS代码部署上的很多问题: 常见的使用场景有以下几种: 允许用户从NPM服务器下载别人编写的第三方包到本地使用. 允许用户从N ...

  6. docker 框架概述

    docker的框架 docker 使用传统的client-server架构模式,用户端通过docker client 与docker  daemon 建立通信,并将请求发送给后者,而docker后端时 ...

  7. c++ cpp和hpp

    首先,我们可以将所有东西都放在一个.cpp文件内,编译器会将这个.cpp编译成.obj,即编译单元.一个程序可以由一个编译单元组成,也可以由多个编译单元组成.一个.cpp对应一个.obj,然后将所有的 ...

  8. python之str (字符型)

    用途: 存储少量的数据,+ *int 切片, 其他操作方法 切片还是对其进行任何操作,获取的内容全部是strl类型 存储数据单一 格式: 在python中用引号引起来的就是字符串 '今天吃了没?' 1 ...

  9. 最小生成树 Prim算法 Kruskal算法实现

    最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的 ...

  10. 交叉编译OpenCV的教程——基于aarch64-linux-gnu的交叉编译器

    1.获取OpenCV3.3.1的源码 地址:https://pan.baidu.com/s/1lnKDThiWg-2QDXNEzVAqrA 提取码:vmn4 2.解压源码包 命令:unzip open ...