SPOJ:Divisors of factorial (hard) (唯一分解&分块优化)
Factorial numbers are getting big very soon, you'll have to compute the number of divisors of such highly composite numbers.
Input
The first line contains an integer T, the number of test cases.
On the next T lines, you will be given two integers N and M.
Output
Output T lines, one for each test case, with the number of divisors of the factorial of N.
Since the answer can get very big, output it modulo M.
Example
Input:
3
2 1000
3 11
4 5
Output:
2
4
3
Constraints
0 < T < 5432
1 < N < 10^8
1 < M < 10^9
For N, M : uniform random input in the range.
One input file.
题意: T组数据 给定N,M ; 求N的阶乘的因子个数 , 结果模M .
思路: 对于求某个数的因子个数 , 我们知道是唯一分解为素数 ,表示为素数的幂的乘积形式a1^p1*a2^p2... 然后结果就是所有(p1+1)*(p2+1)...的乘积.
但是这里的N的阶乘过大, 而且多组询问, T也过大 ,而且需要模不同的M (即可能不能离线求).
考虑到对于大于10000的素数 最多除一次 所以单独考虑 即把前面1229个素数和后面第1230个素数到最后一个素数分开考虑 :前面的暴力除,复杂度1229*logN
后面部分分块 把除数相同的合并. 然后快速幂, 复杂度logN*logN
所以最后的复杂度是O(T*1230*logN)
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1e8;
const int Mod=1e9+;
int p[],vis[maxn+],cnt;
void prime()
{
for(int i=;i<=maxn;i++){
if(!vis[i]) p[++cnt]=i;
for(int j=;j<=cnt&&(ll)i*p[j]<=maxn;j++){
vis[i*p[j]]=;
if(!(i%p[j])) break;
}
}
}
int qpow(int a,int x,int M){
int res=;
while(x){
if(x&) res=(ll)res*a%M;
a=(ll)a*a%M; x>>=;
} return res;
}
int main()
{
int T,i,j,x,M,pos,ans;
prime(); scanf("%d",&T);
for(i=;i<=T;i++){
ans=; scanf("%d%d",&x,&M);
for(j=;j<&&p[j]<=x;j++){ //暴力部分
int tmp=x,num=;
while(tmp){
num+=tmp/p[j]; tmp/=p[j];
}
ans=(ll)ans*(num+)%M;
}
pos=upper_bound(p+,p+cnt+,x)-p; pos--;
int fcy;
for(j=;j<=pos;j=fcy+){ //合并部分
fcy=upper_bound(p+,p+cnt+,x/(x/p[j]))-p; fcy--;
if(fcy>pos) fcy=pos;
ans=(ll)ans*qpow(x/p[j]+,fcy-j+,M)%M;
}
printf("%d\n",ans);
}
return ;
}
SPOJ:Divisors of factorial (hard) (唯一分解&分块优化)的更多相关文章
- bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...
- HDU5780 gcd (BestCoder Round #85 E) 欧拉函数预处理——分块优化
分析(官方题解): 一点感想: 首先上面那个等式成立,然后就是求枚举gcd算贡献就好了,枚举gcd当时赛场上写了一发O(nlogn)的反演,写完过了样例,想交发现结束了 吐槽自己手速慢,但是发了题解后 ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- codevs 2606 约数和(分块优化数学公式 )
题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- [bzoj2301]Problem b莫比乌斯反演+分块优化
题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\ ...
- Codeforces 1129D - Isolation(分块优化 dp)
Codeforces 题目传送门 & 洛谷题目传送门 又独立切了道 *2900( 首先考虑 \(dp\),\(dp_i\) 表示以 \(i\) 为结尾的划分的方式,那么显然有转移 \(dp_i ...
- BZOJ 1257 余数之和sum(分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=46954 题意:f(n, k)=k mod 1 + k mod 2 ...
- Spoj 7001 Visible Lattice Points 莫比乌斯,分块
题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193 Visible Lattice Points Time L ...
随机推荐
- Redis数据结构之链表
Redis使用的链表是双向无环链表,链表节点可用于保存各种不同类型的值. 一.链表结构定义1. 链表节点结构定义: 2. 链表结构定义: 示例: 二.链表在Redis中的用途1. 作为列表键的底层实现 ...
- 51 NOD 1383 整数分解为2的幂
设f[i]为i这个数的划分方案,则: 1.i是奇数的时候,最前面只能放1,所以f[i] = f[i-1] 2.i是偶数的时候,最前面可以放1也可以不放1,而不放1的时候数列都是偶数所以 f[i] = ...
- 关于Properties 集 添加数据 遍历数据
public static void fun1(){ Properties v = new Properties(); v.setProperty("a","1" ...
- 算法 - 求两个自然数的最大公约数(C++)
//************************************************************************************************** ...
- 2017年记录CS+CV
2017年3月开学,始终感觉自己计算机基础薄弱,加上之前自己也开始对机器学习,深度学习有一些了解,始终感觉没有入门.自己开始规划系统学习计算机软件(CS)和计算机视觉(CV)的基础知识.@2017/9 ...
- java utf8字符 导出csv 文件的乱码问题。
在输出的格式为UTF-8的格式,但是打开CSV文件一直为乱码,后来参考了这里的代码,搞定了乱码问题,原文请参考:http://hbase.iteye.com/blog/1172200 private ...
- HashMap变成线程安全方法
我们都知道.HashMap是非线程安全的(非同步的).那么怎么才能让HashMap变成线程安全的呢? 我认为主要可以通过以下三种方法来实现: 1.替换成Hashtable,Hashtable通过对整个 ...
- 一个TAB的jquery简单写法2
<style> .honver{ color:red;} </style><script src="jquery-1.9.0.min.js">& ...
- Access 执行查询时,抛出“标准表达式中数据类型不匹配”的错误
Access根据时间查询时应在查询条件前后加# SELECT COUNT(*) FROM [User] WHERE [CreateTime] > #{0}#
- China Vis 2015 会议小结
China Vis 2015 Paper有6个分会场.主要有 1.天气.气象.灾害可视化. 2.文本可视化应用: 3.树.网络.以及高维技术. 4.时空分析. 5.科学可视化与应用: 五个方面主题. ...