题意:

现在给一个图,问最小生成树和次小生成树的权值和是多少;

思路:

求最小生成树的两种方法,次小生成树是交换最小生成树的其中一条边得到的,现在得到了最小生成树,枚举不在次小生成树中的边,再求一边最小生成树,这些最小生成树的最小权值就是次小生成树的权值了;

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=15e4+10;
const int maxn=1e2+10;
const double eps=1e-5; int mp[maxn][maxn],vis[maxn],n,m,fa[maxn],ans1,ans2;
int prim()
{
int lowcost[maxn],sum=0;
mst(vis,0);
vis[1]=1;
For(i,2,n)lowcost[i]=mp[1][i],fa[i]=1;
For(i,1,n)
{
int temp=inf,k;
For(j,1,n)
{
if(!vis[j]&&lowcost[j]<temp)
{
temp=lowcost[j];
k=j;
}
}
if(temp==inf)break;
sum+=temp;
vis[k]=1;
For(j,1,n)
if(!vis[j]&&mp[k][j]<lowcost[j])lowcost[j]=mp[k][j],fa[j]=k;
}
return sum;
}
int secondprim()
{
int sum=inf,father[maxn];
For(i,2,n)father[i]=fa[i];
For(i,2,n)
{
int x=father[i];
int temp=mp[x][i];
mp[x][i]=mp[i][x]=inf;
int y=prim();
if(y>=ans1)sum=min(sum,y);
mp[x][i]=mp[i][x]=temp;
}
return sum;
}
int main()
{
//freopen("in.txt","r",stdin);
int t ;
read(t);
while(t--)
{
read(n);read(m);
For(i,1,n)For(j,1,n)mp[i][j]=inf;
int u,v,w;
For(i,1,m)
{
read(u);read(v);read(w);
mp[u][v]=mp[v][u]=w;
}
ans1=prim();
ans2=secondprim();
printf("%d %d\n",ans1,ans2);
}
return 0;
}

  

UVA-10600(次小生成树)的更多相关文章

  1. UVA 10600 ACM Contest and Blackout 次小生成树

    又是求次小生成树,就是求出最小生成树,然后枚举不在最小生成树上的每条边,求出包含着条边的最小生成树,然后取一个最小的 #include <iostream> #include <al ...

  2. 【UVA 10600】 ACM Contest and Blackout(最小生成树和次小生成树)

    [题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < ...

  3. [ An Ac a Day ^_^ ] [kuangbin带你飞]专题八 生成树 UVA 10600 ACM Contest and Blackout 最小生成树+次小生成树

    题意就是求最小生成树和次小生成树 #include<cstdio> #include<iostream> #include<algorithm> #include& ...

  4. 【uva 10600】ACM Contest and Blackout(图论--次小生成树 模版题)

    题意:有T组数据,N个点,M条边,每条边有一定的花费.问最小生成树和次小生成树的权值. 解法:具体请见 关于生成树的拓展 {附[转]最小瓶颈路与次小生成树}(图论--生成树) 1 #include&l ...

  5. UVA - 10462-Is There A Second Way Left? Kruskal求次小生成树

    UVA - 10462 题意: 求次小生成树的模板题,这道题因为有重边的存在,所以用kruskal求比较好. #include <iostream> #include <cstdio ...

  6. UVA 10462 Is There A Second Way Left?(次小生成树&Prim&Kruskal)题解

    思路: Prim: 这道题目中有重边 Prim可以先加一个sec数组来保存重边的次小边,这样不会影响到最小生成树,在算次小生成树时要同时判断次小边(不需判断是否在MST中) Kruskal: Krus ...

  7. Qin Shi Huang's National Road System UVA - 1494(次小生成树)

    秦始皇统一中国之后要在全国修公路连接各个城市,皇帝只想修成最小生成树(距离最小,不考虑人力),一个道士说自己可以不花人力物力修一条路,经过两方妥协,选择max(两个城市人口/(生成树长度-这条路的长度 ...

  8. UVA 10462 Is There A Second Way Left? (次小生成树+kruskal)

    题目大意: Nasa应邻居们的要求,决定用一个网络把大家链接在一起.给出v个点,e条可行路线,每条路线分别是x连接到y需要花费w. 1:如果不存在最小生成树,输出“No way”. 2:如果不存在次小 ...

  9. [kuangbin带你飞]专题八 生成树 - 次小生成树部分

    百度了好多自学到了次小生成树 理解后其实也很简单 求最小生成树的办法目前遇到了两种 1 prim 记录下两点之间连线中的最长段 F[i][k] 之后枚举两点 若两点之间存在没有在最小生成树中的边 那么 ...

  10. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. [转发]Android 系统稳定性 - ANR(三)

    文章都为原创,转载请注明出处,未经允许而盗用者追究法律责任. 很久之前写的了,留着有点浪费,共享之. 编写者:李文栋 http://rayleeya.iteye.com/blog/1956056 1. ...

  2. 在 VirtualBox 5.0 系列中让虚拟机支持 USB 3.0 必须开启 APIC

    VirtualBox 5.0 系列正式支持 USB 3.0,能够在宿主机支持 USB 3.0 的情况下,让虚拟机也选择具备 USB 3.0 的功能.但是经过多方试验,发现必须在 VirtualBox ...

  3. HDU - 5973 Game of Taking Stones (威佐夫博弈 高精度)

    题目描述: Two people face two piles of stones and make a game. They take turns to take stones. As game r ...

  4. BZOJ3786 星际探索

    @(BZOJ)[DFS序, Splay] Description 物理学家小C的研究正遇到某个瓶颈. 他正在研究的是一个星系,这个星系中有n个星球,其中有一个主星球(方便起见我们默认其为1号星球),其 ...

  5. 使用Maven运行Java main的方法(转)

    使用Maven运行Java Main的方法(既Java Application项目),可以有如下方式解决: 1.将Maven项目导入到eclipse中,然后直接项目右键[Run As]->[Ja ...

  6. Maven学习使用Nexus搭建Maven私服

    原文:http://www.cnblogs.com/quanyongan/archive/2013/04/24/3037589.html 为什么要搭建nexus私服,原因很简单,有些公司都不提供外网给 ...

  7. 【转】LINUX 手动建立SWAP文件及删除

    如何在红帽 企业版Linux系统中添加swap文件? 解决方法: 1. 确定swap文件的大小,单位为M.将该值乘以1024得到块大小.例如,64MB的swap文件的块大小是65536. 2. 在ro ...

  8. 递归获取JSON内容的key-value值

    方法主体: 使用时,请在类中先声明一个Map,參数形式例如以下: JSONObject jobj = new JSONObject(JSONContent); 首次请传递jobj.

  9. XSS学习分支图

    转载请注明出处:http://blog.csdn.net/cym492224103 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2 ...

  10. jquery 常用选择器 回顾 ajax() parent() parents() children() siblings() find() eq() has() filter() next()

    1. $.ajax() ajax 本身是异步操作,当需要将 异步 改为 同步时: async: false 2.parent()  父级元素  和  parents() 祖先元素 的区别 parent ...