Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8017   Accepted: 4257

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

【题目大意】
最大括号匹配
【思路】
区间dp 枚举长度
【code】
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
char s[];
int dp[][];
int main()
{
while(gets(s)!=NULL)
{
if(s[]=='e')break;
memset(dp,,sizeof(dp));
int len=strlen(s);
for(int i=;i<=len;i++)
for(int j=,k=i;k<=len;j++,k++)
{
if(s[j]=='('&&s[k]==')'||s[j]=='['&&s[k]==']')
dp[j][k]=dp[j+][k-]+;
for(int p=j;p<=k;p++)
dp[j][k]=max(dp[j][k],dp[j][p]+dp[p+][k]);
}
printf("%d\n",dp[][len-]);
}
return ;
}

  

Brackets(区间dp)的更多相关文章

  1. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  2. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  3. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  4. Brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3624   Accepted: 1879 Descript ...

  5. POJ2955:Brackets(区间DP)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  6. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  7. Code Forces 149DColoring Brackets(区间DP)

     Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. POJ2955 Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Su ...

  9. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  10. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

随机推荐

  1. PostgreSQL SystemTap on Linux

    http://digoal126.wap.blog.163.com/w2/blogDetail.do;jsessionid=3949B03DE151DA0E55D807466C5E630B.yqblo ...

  2. python把日期转换为秒数;日期转为字符串;datetime、date

    1.秒数是相对于1970.1.1号的秒数 2.日期的模块有time.datetime 3. import datetime t = datetime.datetime(2009, 10, 21, 0, ...

  3. [转]java中的字符串相关知识整理

    字符串为什么这么重要 写了多年java的开发应该对String不陌生,但是我却越发觉得它陌生.每学一门编程语言就会与字符串这个关键词打不少交道.看来它真的很重要. 字符串就是一系列的字符组合的串,如果 ...

  4. Oracle 物理和逻辑备库健康监測的一个根据

    以以下keyword眼为例: 1 物理备库健康检查根据: Tue Apr 22 16:44:51 CST 2014Media Recovery Log /data/CMS/arch_log/1_583 ...

  5. 日常方便使用的Python脚本实现

    目录 文件批量重命名 bin文件合并 正文 1.python根据不同条件批量实现文件重命名 因为下载的电视剧名字比较乱,但却按照下载时间顺序依次排列,而手动重命名或者找软件太麻烦,我就自己实现了个: ...

  6. JS判断访问设备(userAgent)加载不同页面 JS判断客户端操作系统类型(platform)

    //平台.设备和操作系统 var system ={ win : false, mac : false, xll : false }; //检测平台 var p = navigator.platfor ...

  7. Access 执行查询时,抛出“标准表达式中数据类型不匹配”的错误

    Access根据时间查询时应在查询条件前后加# SELECT COUNT(*) FROM [User] WHERE [CreateTime] > #{0}#

  8. (转载)js(jquery)的on绑定点击事件执行两次的解决办法

    js(jquery)的on绑定点击事件执行两次的解决办法—不是事件绑定而是事件冒泡 遇到的问题:jquery中用.on()给页面中新加的元素添加点击事件时,点击事件源,绑定的事件执行两次,这里的ale ...

  9. Python开发【第6节】【文件操作】

    1.基本文件操作 open() 打开或者创建一个文件 格式:open('文件路径','打开模式') 返回值:文件io对象 打开模式一共N种: w模式 写模式write 文件不存在时会创建文件,如果文件 ...

  10. AMQP 0-9-1 Model Explained Why does the queue memory grow and shrink when publishing/consuming? AMQP和AMQP Protocol的是整体和部分的关系 RabbitMQ speaks multiple protocols.

    AMQP 0-9-1 Model Explained — RabbitMQ http://next.rabbitmq.com/tutorials/amqp-concepts.html AMQP 0-9 ...