Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8017   Accepted: 4257

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

【题目大意】
最大括号匹配
【思路】
区间dp 枚举长度
【code】
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
char s[];
int dp[][];
int main()
{
while(gets(s)!=NULL)
{
if(s[]=='e')break;
memset(dp,,sizeof(dp));
int len=strlen(s);
for(int i=;i<=len;i++)
for(int j=,k=i;k<=len;j++,k++)
{
if(s[j]=='('&&s[k]==')'||s[j]=='['&&s[k]==']')
dp[j][k]=dp[j+][k-]+;
for(int p=j;p<=k;p++)
dp[j][k]=max(dp[j][k],dp[j][p]+dp[p+][k]);
}
printf("%d\n",dp[][len-]);
}
return ;
}

  

Brackets(区间dp)的更多相关文章

  1. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  2. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  3. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  4. Brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3624   Accepted: 1879 Descript ...

  5. POJ2955:Brackets(区间DP)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  6. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  7. Code Forces 149DColoring Brackets(区间DP)

     Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. POJ2955 Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Su ...

  9. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  10. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

随机推荐

  1. android widgets控件

    1.TextView 类似,C#里的lable,显示一段文本 <TextView android:id="@+id/textView2" android:layout_wid ...

  2. sring->list->del->string->int:解析左右编码器的,和#号

    #def test_sprintf(): import string ' str1="1234567890," print'str1 is',str1 list_raw=list( ...

  3. CodeBlock换肤

    CodeBlock换肤 conf文件下载地址 我的是在D:\Program Files (x86)\CodeBlocks\AppData\codeblocks\default.conf 然后替换本地的 ...

  4. RED HAT 7 性能监控工具

    https://access.redhat.com/documentation/zh-CN/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Gui ...

  5. XP操作系统设置:[82]关机快捷键

    磨镰刀不少割麦,掌握了快速关机的多种方法,在尴尬的时候说不定还真能派上用场呢.   工具/原料   手提电脑.台式电脑.Windows 操作系统. 方法一:   1 Windows XP 操作系统中有 ...

  6. HDOJ 1217 Arbitrage(拟最短路,floyd算法)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  7. 第二种BitBand操作的方式 - 让IDE来帮忙算地址

    要使用Bitband来訪问外设,一定要得出相应的映射地址.人工计算肯定是不靠谱的,并且也没人想这么干.因此能够通过Excel,拉个列表来计算.想想,这也是一个不错的招数.可是后来想想,还是嫌麻烦,毕竟 ...

  8. opencvSGBM半全局立体匹配算法的研究(1)

    转载请说明出处:http://blog.csdn.net/zhubaohua_bupt/article/details/51866567 这段时间对opencvSGBM半全局立体匹配算法进行了比較仔细 ...

  9. Linux fcntl函数详解

    功能描述:根据文件描述词来操作文件的特性. 文件控制函数          fcntl -- file control 头文件: #include <unistd.h> #include ...

  10. 爬虫-UserAgent

    废话不多说,直接写代码 [root@localhost ~]# pip3 install fake-useragent Collecting fake-useragent Downloading ht ...