理解分布式id生成算法SnowFlake

https://segmentfault.com/a/1190000011282426#articleHeader2

分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种。

概述

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

图片描述

1位,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0

41位,用来记录时间戳(毫秒)。

41位可以表示241−1个数字,

如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 241−1,减1是因为可表示的数值范围是从0开始算的,而不是1。

也就是说41位可以表示241−1个毫秒的值,转化成单位年则是(241−1)/(1000∗60∗60∗24∗365)=69年

10位,用来记录工作机器id。

可以部署在210=1024个节点,包括5位datacenterId和5位workerId

5位(bit)可以表示的最大正整数是25−1=31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

12位,序列号,用来记录同毫秒内产生的不同id。

12位(bit)可以表示的最大正整数是212−1=4095,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

SnowFlake可以保证:

所有生成的id按时间趋势递增

整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

Talk is cheap, show you the code

以下是Twitter官方原版的,用Scala写的,(我也不懂Scala,当成Java看即可):

/** Copyright 2010-2012 Twitter, Inc.*/

package com.twitter.service.snowflake

import com.twitter.ostrich.stats.Stats

import com.twitter.service.snowflake.gen._

import java.util.Random

import com.twitter.logging.Logger

/**

  • An object that generates IDs.
  • This is broken into a separate class in case
  • we ever want to support multiple worker threads
  • per process

    */

    class IdWorker(

    val workerId: Long,

    val datacenterId: Long,

    private val reporter: Reporter,

    var sequence: Long = 0L) extends Snowflake.Iface {

private[this] def genCounter(agent: String) = {

Stats.incr("ids_generated")

Stats.incr("ids_generated_%s".format(agent))

}

private[this] val exceptionCounter = Stats.getCounter("exceptions")

private[this] val log = Logger.get

private[this] val rand = new Random

val twepoch = 1288834974657L

private[this] val workerIdBits = 5L

private[this] val datacenterIdBits = 5L

private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)

private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)

private[this] val sequenceBits = 12L

private[this] val workerIdShift = sequenceBits

private[this] val datacenterIdShift = sequenceBits + workerIdBits

private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits

private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)

private[this] var lastTimestamp = -1L

// sanity check for workerId

if (workerId > maxWorkerId || workerId < 0) {

exceptionCounter.incr(1)

throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId))

}

if (datacenterId > maxDatacenterId || datacenterId < 0) {

exceptionCounter.incr(1)

throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId))

}

log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId)

def get_id(useragent: String): Long = {

if (!validUseragent(useragent)) {

exceptionCounter.incr(1)

throw new InvalidUserAgentError

}

val id = nextId()
genCounter(useragent) reporter.report(new AuditLogEntry(id, useragent, rand.nextLong))
id

}

def get_worker_id(): Long = workerId

def get_datacenter_id(): Long = datacenterId

def get_timestamp() = System.currentTimeMillis

protected[snowflake] def nextId(): Long = synchronized {

var timestamp = timeGen()

if (timestamp < lastTimestamp) {
exceptionCounter.incr(1)
log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(
lastTimestamp - timestamp))
} if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp)
}
} else {
sequence = 0
} lastTimestamp = timestamp
((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence

}

protected def tilNextMillis(lastTimestamp: Long): Long = {

var timestamp = timeGen()

while (timestamp <= lastTimestamp) {

timestamp = timeGen()

}

timestamp

}

protected def timeGen(): Long = System.currentTimeMillis()

val AgentParser = """([a-zA-Z][a-zA-Z-0-9]*)""".r

def validUseragent(useragent: String): Boolean = useragent match {

case AgentParser(_) => true

case _ => false

}

}

Scala是一门可以编译成字节码的语言,简单理解是在Java语法基础上加上了很多语法糖,例如不用每条语句后写分号,可以使用动态类型等等。抱着试一试的心态,我把Scala版的代码“翻译”成Java版本的,对scala代码改动的地方如下:

/** Copyright 2010-2012 Twitter, Inc.*/

package com.twitter.service.snowflake

import com.twitter.ostrich.stats.Stats

import com.twitter.service.snowflake.gen._

import java.util.Random

import com.twitter.logging.Logger

/**

  • An object that generates IDs.
  • This is broken into a separate class in case
  • we ever want to support multiple worker threads
  • per process

    */

    class IdWorker( // |

    val workerId: Long, // |

    val datacenterId: Long, // |<--这部分改成Java的构造函数形式

    private val reporter: Reporter,//日志相关,删 // |

    var sequence: Long = 0L) // |

    extends Snowflake.Iface { //接口找不到,删 // |

private[this] def genCounter(agent: String) = { // |

Stats.incr("ids_generated") // |

Stats.incr("ids_generated_%s".format(agent)) // |<--错误、日志处理相关,删

} // |

private[this] val exceptionCounter = Stats.getCounter("exceptions") // |

private[this] val log = Logger.get // |

private[this] val rand = new Random // |

val twepoch = 1288834974657L

private[this] val workerIdBits = 5L

private[this] val datacenterIdBits = 5L

private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)

private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)

private[this] val sequenceBits = 12L

private[this] val workerIdShift = sequenceBits

private[this] val datacenterIdShift = sequenceBits + workerIdBits

private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits

private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)

private[this] var lastTimestamp = -1L

//----------------------------------------------------------------------------------------------------------------------------//

// sanity check for workerId //

if (workerId > maxWorkerId || workerId < 0) { //

exceptionCounter.incr(1) //<--错误处理相关,删 //

throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId)) //这

// |-->改成:throw new IllegalArgumentException //部

// (String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)) //分

} //放

//到

if (datacenterId > maxDatacenterId || datacenterId < 0) { //构

exceptionCounter.incr(1) //<--错误处理相关,删 //造

throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId)) //函

// |-->改成:throw new IllegalArgumentException //数

// (String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)) //中

} //

//

log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", //

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId) //

// |-->改成:System.out.printf("worker...%d...",timestampLeftShift,...); //

//----------------------------------------------------------------------------------------------------------------------------//

//-------------------------------------------------------------------//

//这个函数删除错误处理相关的代码后,剩下一行代码:val id = nextId() //

//所以我们直接调用nextId()函数可以了,所以在“翻译”时可以删除这个函数 //

def get_id(useragent: String): Long = { //

if (!validUseragent(useragent)) { //

exceptionCounter.incr(1) //

throw new InvalidUserAgentError //删

} //除

//

val id = nextId() //

genCounter(useragent) //

//

reporter.report(new AuditLogEntry(id, useragent, rand.nextLong)) //

id //

} //

//-------------------------------------------------------------------//

def get_worker_id(): Long = workerId // |

def get_datacenter_id(): Long = datacenterId // |<--改成Java函数

def get_timestamp() = System.currentTimeMillis // |

protected[snowflake] def nextId(): Long = synchronized { // 改成Java函数

var timestamp = timeGen()

if (timestamp < lastTimestamp) {
exceptionCounter.incr(1) // 错误处理相关,删
log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); // 改成System.err.printf(...)
throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(
lastTimestamp - timestamp)) // 改成RumTimeException
} if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp)
}
} else {
sequence = 0
} lastTimestamp = timestamp
((timestamp - twepoch) << timestampLeftShift) | // |<--加上关键字return
(datacenterId << datacenterIdShift) | // |
(workerId << workerIdShift) | // |
sequence // |

}

protected def tilNextMillis(lastTimestamp: Long): Long = { // 改成Java函数

var timestamp = timeGen()

while (timestamp <= lastTimestamp) {

timestamp = timeGen()

}

timestamp // 加上关键字return

}

protected def timeGen(): Long = System.currentTimeMillis() // 改成Java函数

val AgentParser = """([a-zA-Z][a-zA-Z-0-9]*)""".r // |

// |

def validUseragent(useragent: String): Boolean = useragent match { // |<--日志相关,删

case AgentParser(_) => true // |

case _ => false // |

} // |

}

改出来的Java版:

public class IdWorker{

private long workerId;
private long datacenterId;
private long sequence; public IdWorker(long workerId, long datacenterId, long sequence){
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId); this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
} private long twepoch = 1288834974657L; private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
private long sequenceBits = 12L; private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private long sequenceMask = -1L ^ (-1L << sequenceBits); private long lastTimestamp = -1L; public long getWorkerId(){
return workerId;
} public long getDatacenterId(){
return datacenterId;
} public long getTimestamp(){
return System.currentTimeMillis();
} public synchronized long nextId() {
long timestamp = timeGen(); if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
} if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
} lastTimestamp = timestamp;
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
} private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} private long timeGen(){
return System.currentTimeMillis();
} //---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1,1,1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}

}

代码理解

上面的代码中,有部分位运算的代码,如:

sequence = (sequence + 1) & sequenceMask;

private long maxWorkerId = -1L ^ (-1L << workerIdBits);

return ((timestamp - twepoch) << timestampLeftShift) |

(datacenterId << datacenterIdShift) |

(workerId << workerIdShift) |

sequence;

为了能更好理解,我对相关知识研究了一下。

负数的二进制表示

在计算机中,负数的二进制是用补码来表示的。

假设我是用Java中的int类型来存储数字的,

int类型的大小是32个二进制位(bit),即4个字节(byte)。(1 byte = 8 bit)

那么十进制数字3在二进制中的表示应该是这样的:

00000000 00000000 00000000 00000011

// 3的二进制表示,就是原码

那数字-3在二进制中应该如何表示?

我们可以反过来想想,因为-3+3=0,

在二进制运算中把-3的二进制看成未知数x来求解,

求解算式的二进制表示如下:

00000000 00000000 00000000 00000011 //3,原码

  • xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx //-3,补码

00000000 00000000 00000000 00000000

反推x的值,3的二进制加上什么值才使结果变成00000000 00000000 00000000 00000000?:

00000000 00000000 00000000 00000011 //3,原码

  • 11111111 11111111 11111111 11111101 //-3,补码

1 00000000 00000000 00000000 00000000

反推的思路是3的二进制数从最低位开始逐位加1,使溢出的1不断向高位溢出,直到溢出到第33位。然后由于int类型最多只能保存32个二进制位,所以最高位的1溢出了,剩下的32位就成了(十进制的)0。

补码的意义就是可以拿补码和原码(3的二进制)相加,最终加出一个“溢出的0”

以上是理解的过程,实际中记住公式就很容易算出来:

补码 = 反码 + 1

补码 = (原码 - 1)再取反码

因此-1的二进制应该这样算:

00000000 00000000 00000000 00000001 //原码:1的二进制

11111111 11111111 11111111 11111110 //取反码:1的二进制的反码

11111111 11111111 11111111 11111111 //加1:-1的二进制表示(补码)

用位运算计算n个bit能表示的最大数值

比如这样一行代码:

private long workerIdBits = 5L;
private long maxWorkerId = -1L ^ (-1L << workerIdBits);

上面代码换成这样看方便一点:

long maxWorkerId = -1L ^ (-1L << 5L)

咋一看真的看不准哪个部分先计算,于是查了一下Java运算符的优先级表:

图片描述

所以上面那行代码中,运行顺序是:

-1 左移 5,得结果a

-1 异或 a

long maxWorkerId = -1L ^ (-1L << 5L)的二进制运算过程如下:

-1 左移 5,得结果a :

    11111111 11111111 11111111 11111111 //-1的二进制表示(补码)

11111 11111111 11111111 11111111 11100000 //高位溢出的不要,低位补0

11111111 11111111 11111111 11100000 //结果a

-1 异或 a :

    11111111 11111111 11111111 11111111 //-1的二进制表示(补码)
^ 11111111 11111111 11111111 11100000 //两个操作数的位中,相同则为0,不同则为1

    00000000 00000000 00000000 00011111 //最终结果31

最终结果是31,二进制00000000 00000000 00000000 00011111转十进制可以这么算:

24+23+22+21+20=16+8+4+2+1=31

那既然现在知道算出来long maxWorkerId = -1L ^ (-1L << 5L)中的maxWorkerId = 31,有什么含义?为什么要用左移5来算?如果你看过概述部分,请找到这段内容看看:

5位(bit)可以表示的最大正整数是25−1=31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

-1L ^ (-1L << 5L)结果是31,25−1的结果也是31,所以在代码中,-1L ^ (-1L << 5L)的写法是利用位运算计算出5位能表示的最大正整数是多少

用mask防止溢出

有一段有趣的代码:

sequence = (sequence + 1) & sequenceMask;

分别用不同的值测试一下,你就知道它怎么有趣了:

    long seqMask = -1L ^ (-1L << 12L); //计算12位能耐存储的最大正整数,相当于:2^12-1 = 4095
System.out.println("seqMask: "+seqMask);
System.out.println(1L & seqMask);
System.out.println(2L & seqMask);
System.out.println(3L & seqMask);
System.out.println(4L & seqMask);
System.out.println(4095L & seqMask);
System.out.println(4096L & seqMask);
System.out.println(4097L & seqMask);
System.out.println(4098L & seqMask); /**
seqMask: 4095
1
2
3
4
4095
0
1
2
*/

这段代码通过位与运算保证计算的结果范围始终是 0-4095 !

用位运算汇总结果

还有另外一段诡异的代码:

return ((timestamp - twepoch) << timestampLeftShift) |

(datacenterId << datacenterIdShift) |

(workerId << workerIdShift) |

sequence;

为了弄清楚这段代码,

首先 需要计算一下相关的值:

private long twepoch = 1288834974657L; //起始时间戳,用于用当前时间戳减去这个时间戳,算出偏移量

private long workerIdBits = 5L; //workerId占用的位数:5
private long datacenterIdBits = 5L; //datacenterId占用的位数:5
private long maxWorkerId = -1L ^ (-1L << workerIdBits); // workerId可以使用的最大数值:31
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // datacenterId可以使用的最大数值:31
private long sequenceBits = 12L;//序列号占用的位数:12 private long workerIdShift = sequenceBits; // 12
private long datacenterIdShift = sequenceBits + workerIdBits; // 12+5 = 17
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 12+5+5 = 22
private long sequenceMask = -1L ^ (-1L << sequenceBits);//4095 private long lastTimestamp = -1L;

其次 写个测试,把参数都写死,并运行打印信息,方便后面来核对计算结果:

//---------------测试---------------
public static void main(String[] args) {
long timestamp = 1505914988849L;
long twepoch = 1288834974657L;
long datacenterId = 17L;
long workerId = 25L;
long sequence = 0L; System.out.printf("\ntimestamp: %d \n",timestamp);
System.out.printf("twepoch: %d \n",twepoch);
System.out.printf("datacenterId: %d \n",datacenterId);
System.out.printf("workerId: %d \n",workerId);
System.out.printf("sequence: %d \n",sequence);
System.out.println();
System.out.printf("(timestamp - twepoch): %d \n",(timestamp - twepoch));
System.out.printf("((timestamp - twepoch) << 22L): %d \n",((timestamp - twepoch) << 22L));
System.out.printf("(datacenterId << 17L): %d \n" ,(datacenterId << 17L));
System.out.printf("(workerId << 12L): %d \n",(workerId << 12L));
System.out.printf("sequence: %d \n",sequence); long result = ((timestamp - twepoch) << 22L) |
(datacenterId << 17L) |
(workerId << 12L) |
sequence;
System.out.println(result); } /** 打印信息:
timestamp: 1505914988849
twepoch: 1288834974657
datacenterId: 17
workerId: 25
sequence: 0 (timestamp - twepoch): 217080014192
((timestamp - twepoch) << 22L): 910499571845562368
(datacenterId << 17L): 2228224
(workerId << 12L): 102400
sequence: 0
910499571847892992
*/

代入位移的值得之后,就是这样:

return ((timestamp - 1288834974657) << 22) |

(datacenterId << 17) |

(workerId << 12) |

sequence;

对于尚未知道的值,我们可以先看看概述 中对SnowFlake结构的解释,再代入在合法范围的值(windows系统可以用计算器方便计算这些值的二进制),来了解计算的过程。

当然,由于我的测试代码已经把这些值写死了,那直接用这些值来手工验证计算结果即可:

    long timestamp = 1505914988849L;
long twepoch = 1288834974657L;
long datacenterId = 17L;
long workerId = 25L;
long sequence = 0L;

设:timestamp = 1505914988849,twepoch = 1288834974657

1505914988849 - 1288834974657 = 217080014192 (timestamp相对于起始时间的毫秒偏移量),其(a)二进制左移22位计算过程如下:

                    |<--这里开始左右22位                            ‭

00000000 00000000 000000|00 00110010 10001010 11111010 00100101 01110000 // a = 217080014192

00001100 10100010 10111110 10001001 01011100 00|000000 00000000 00000000 // a左移22位后的值(la)

|<--这里后面的位补0

设:datacenterId = 17,其(b)二进制左移17位计算过程如下:

               |<--这里开始左移17位

00000000 00000000 0|0000000 ‭00000000 00000000 00000000 00000000 00010001 // b = 17

0000000‭0 00000000 00000000 00000000 00000000 0010001|0 00000000 00000000 // b左移17位后的值(lb)

|<--这里后面的位补0

设:workerId = 25,其(c)二进制左移12位计算过程如下:

         |<--这里开始左移12位

‭00000000 0000|0000 00000000 00000000 00000000 00000000 00000000 00011001‬ // c = 25

00000000 00000000 00000000 00000000 00000000 00000001 1001|0000 00000000‬ // c左移12位后的值(lc)

|<--这里后面的位补0

设:sequence = 0,其二进制如下:

00000000 00000000 00000000 00000000 00000000 00000000 0000‭0000 00000000‬ // sequence = 0

现在知道了每个部分左移后的值(la,lb,lc),代码可以简化成下面这样去理解:

return ((timestamp - 1288834974657) << 22) |

(datacenterId << 17) |

(workerId << 12) |

sequence;

       |
|简化
\|/

return (la) |

(lb) |

(lc) |

sequence;

上面的管道符号|在Java中也是一个位运算符。其含义是:

x的第n位和y的第n位 只要有一个是1,则结果的第n位也为1,否则为0,因此,我们对四个数的位或运算如下:

1 | 41 | 5 | 5 | 12

0|0001100 10100010 10111110 10001001 01011100 00|00000|0 0000|0000 00000000 //la

0|000000‭0 00000000 00000000 00000000 00000000 00|10001|0 0000|0000 00000000 //lb

0|0000000 00000000 00000000 00000000 00000000 00|00000|1 1001|0000 00000000 //lc

or 0|0000000 00000000 00000000 00000000 00000000 00|00000|0 0000|‭0000 00000000‬ //sequence

0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000‬ //结果:910499571847892992

结果计算过程:

  1. 从至左列出1出现的下标(从0开始算):

0000 1 1 00 1 0 1 000 1 0 1 0 1 1 1 1 1 0 1 000 1 00 1 0 1 0 1 1 1 0000 1 000 1 1 1 00 1‭ 0000 0000 0000

59 58 55 53 49 47 45 44 43 42 41 39 35 32 30 28 27 26 21 17 16 15 12

2) 各个下标作为2的幂数来计算,并相加:

259+258+255+253+249+247+245+244+243+242+241+239+235+232+230+228+227+226+221+217+216+215+22

2^59} : 576460752303423488

2^58} : 288230376151711744

2^55} : 36028797018963968

2^53} : 9007199254740992

2^49} : 562949953421312

2^47} : 140737488355328

2^45} : 35184372088832

2^44} : 17592186044416

2^43} : 8796093022208

2^42} : 4398046511104

2^41} : 2199023255552

2^39} : 549755813888

2^35} : 34359738368

2^32} : 4294967296

2^30} : 1073741824

2^28} : 268435456

2^27} : 134217728

2^26} : 67108864

2^21} : 2097152

2^17} : 131072

2^16} : 65536

2^15} : 32768

  • 2^12} : 4096

         910499571847892992

计算截图:

图片描述

跟测试程序打印出来的结果一样,手工验证完毕!

观察

1 | 41 | 5 | 5 | 12

0|0001100 10100010 10111110 10001001 01011100 00| | | //la

0| |10001| | //lb

0| | |1 1001| //lc

or 0| | | |‭0000 00000000‬ //sequence

0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000‬ //结果:910499571847892992

上面的64位我按1、41、5、5、12的位数截开了,方便观察。

纵向观察发现:

在41位那一段,除了la一行有值,其它行(lb、lc、sequence)都是0,(我爸其它)

在左起第一个5位那一段,除了lb一行有值,其它行都是0

在左起第二个5位那一段,除了lc一行有值,其它行都是0

按照这规律,如果sequence是0以外的其它值,12位那段也会有值的,其它行都是0

横向观察发现:

在la行,由于左移了5+5+12位,5、5、12这三段都补0了,所以la行除了41那段外,其它肯定都是0

同理,lb、lc、sequnece行也以此类推

正因为左移的操作,使四个不同的值移到了SnowFlake理论上相应的位置,然后四行做位或运算(只要有1结果就是1),就把4段的二进制数合并成一个二进制数。

结论:

所以,在这段代码中

return ((timestamp - 1288834974657) << 22) |

(datacenterId << 17) |

(workerId << 12) |

sequence;

左移运算是为了将数值移动到对应的段(41、5、5,12那段因为本来就在最右,因此不用左移)。

然后对每个左移后的值(la、lb、lc、sequence)做位或运算,是为了把各个短的数据合并起来,合并成一个二进制数。

最后转换成10进制,就是最终生成的id

扩展

在理解了这个算法之后,其实还有一些扩展的事情可以做:

根据自己业务修改每个位段存储的信息。算法是通用的,可以根据自己需求适当调整每段的大小以及存储的信息。

解密id,由于id的每段都保存了特定的信息,所以拿到一个id,应该可以尝试反推出原始的每个段的信息。反推出的信息可以帮助我们分析。比如作为订单,可以知道该订单的生成日期,负责处理的数据中心等等。

理解分布式id生成算法SnowFlake的更多相关文章

  1. 分布式 ID 生成算法 — SnowFlake

    一.概述 分布式 ID 生成算法的有很多种,Twitter 的 SnowFlake 就是其中经典的一种. SnowFlake 算法生成 ID 的结果是一个 64bit 大小的整数,它的结构如下图: 1 ...

  2. 美团技术分享:深度解密美团的分布式ID生成算法

    本文来自美团技术团队“照东”的分享,原题<Leaf——美团点评分布式ID生成系统>,收录时有勘误.修订并重新排版,感谢原作者的分享. 1.引言 鉴于IM系统中聊天消息ID生成算法和生成策略 ...

  3. Twitter的SnowFlake分布式id生成算法

    二进制相关知识回顾 1.所有的数据都是以二进制的形式存储在硬盘上.对于一个字节的8位到底是什么类型 计算机是如何分辨的呢? 其实计算机并不负责判断数据类型,数据类型是程序告诉计算机该如何解释内存块. ...

  4. java 分布式id生成算法

    import java.lang.management.ManagementFactory; import java.net.InetAddress; import java.net.NetworkI ...

  5. SnowFlake --- 分布式id生成算法

    转载自:https://segmentfault.com/a/1190000011282426 概述 SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 1位,不用.二进 ...

  6. SnowFlake分布式ID生成及反解析

    概述 分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种,SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 1位,不用.二进制中最高位为 ...

  7. 分布式系统的唯一id生成算法你了解吗?

    在分库分表之后你必然要面对的一个问题,就是id咋生成? 因为要是一个表分成多个表之后,每个表的id都是从1开始累加自增长,那肯定不对啊. 举个例子,你的订单表拆分为了1024张订单表,每个表的id都从 ...

  8. 分布式id生成方案总结

    本文已经收录自 JavaGuide (60k+ Star[Java学习+面试指南] 一份涵盖大部分Java程序员所需要掌握的核心知识.) 本文授权转载自:https://juejin.im/post/ ...

  9. 分布式ID生成方案总结整理

    目录 1.为什么需要分布式ID? 2.业务系统对分布式ID有什么要求? 3.分布式ID生成方案 3.1 UUID 3.2.数据库自增 3.3.号段模式 3.4. Redis实现 3.4. 雪花算法(S ...

随机推荐

  1. 分布式架构和微服务CI/CD的范本技术解读

    随笔分类 - 分布式架构--http://www.cnblogs.com/hujihon/category/858846.html (ZooKeeper.activemq.redis.kafka)的分 ...

  2. 《Java虚拟机原理图解》 1.2、class文件中的常量池

    了解JVM虚拟机原理 是每一个Java程序员修炼的必经之路.但是由于JVM虚拟机中有很多的东西讲述的比较宽泛,在当前接触到的关于JVM虚拟机原理的教程或者博客中,绝大部分都是充斥的文字性的描述,很难给 ...

  3. Flux --> Redux --> Redux React 入门 基础实例使用

    本文的目的很简单,介绍Redux相关概念用法 及其在React项目中的基本使用 假设你会一些ES6.会一些React.有看过Redux相关的文章,这篇入门小文应该能帮助你理一下相关的知识 一般来说,推 ...

  4. R12: How to add Microsoft Excel as Type to the Create Template List of Values in BI Publisher (Doc ID 1343225.1)

    Modified: 27-Oct-2013 Type: HOWTO In this Document Goal Solution References APPLIES TO: BI Publisher ...

  5. AppCompatActivity

    刚开始看HelloWorld的目录结构然后就发现Android Studio中的是 import android support.v7.app.AppcompatActivity; public cl ...

  6. iOS开发 下滑隐藏Tabbar

    项目中用到下滑隐藏tabbar,上滑显示.      虽然实现起来非常简单,还是记录一下. -(void)scrollViewDidScroll:(UIScrollView*)scrollView { ...

  7. javascript 在线文本编辑器

    javascript 在线文本编辑器实现代码. 效果例如以下: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGhwZmVuZ2h1bw==/font/5 ...

  8. 最小公倍数(Least Common Multiple)

    最小公倍数=两个数的乘积/两个数的最大公约数. 接上篇求最大公约数方法,最小公倍数的代码例如以下: public class LCM { //最小公倍数=两数乘积/最大公约数 public stati ...

  9. centos安装时各个版本的含义

    Desktop :基本的桌面系统,包括常用的桌面软件,如文档查看工具.Minimal Desktop :基本的桌面系统,包含的软件更少.Minimal :基本的系统,不含有任何可选的软件包.Basic ...

  10. 自己动手写CPU之第九阶段(7)——MIPS32中的LL、SC指令说明

    将陆续上传新书<自己动手写CPU>,今天是第46篇. 在MIPS32指令集中有两条特殊的存储载入指令:链接载入指令LL.条件存储指令SC,本次将介绍这两条指令.在兴许将实现这两条指令. 9 ...