Bellman_ford算法用于寻找正环或者负环!

算法导论:

24.1 The Bellman-Ford algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths problem in the general case in which edge weights may be negative. Given a weighted, directed graph G = (VE) with source s and weight function w : E → R, the Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source. If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortest paths and their weights.

The algorithm uses relaxation, progressively decreasing an estimate d[v] on the weight of a shortest path from the source s to each vertex v ∈ V until it achieves the actual shortest-path weight δ(sv). The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are reachable from the source.

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i1 to |V[G]| - 1
3 do for each edge (u, v) ∈ E[G]
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E[G]
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

Figure 24.4 shows the execution of the Bellman-Ford algorithm on a graph with 5 vertices. After initializing the dand π values of all vertices in line 1, the algorithm makes |V| – 1 passes over the edges of the graph. Each pass is one iteration of the for loop of lines 2-4 and consists of relaxing each edge of the graph once. Figures 24.4(b)-(e) show the state of the algorithm after each of the four passes over the edges. After making |V|- 1 passes, lines 5-8 check for a negative-weight cycle and return the appropriate boolean value. (We’ll see a little later why this check works.)

(单击图片可以放大)

Figure 24.4: The execution of the Bellman-Ford algorithm. The source is vertex s. The d values are shown within the vertices, and shaded edges indicate predecessor values: if edge (u, v) is shaded, then π[v] = u. In this particular example, each pass relaxes the edges in the order (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y). (a) The situation just before the first pass over the edges. (b)-(e) The situation after each successive pass over the edges. The d and π values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this example.

The Bellman-Ford algorithm runs in time O(V E), since the initialization in line 1 takes Θ(V) time, each of the |V| – 1 passes over the edges in lines 2-4 takes Θ(E) time, and the for loop of lines 5-7 takes O(E) time.

题目:

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.
 
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 105
#define N 33
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-;
const double PI = acos(-1.0);
/*
即寻找从给定状态开始有没有正环
*/
struct edge
{
int u, v;
double cost, rate;
edge(int _u,int _v,double _cost,double _rate):u(_u),v(_v),cost(_cost),rate(_rate){}
};
vector<edge> E;
double dis[MAXN];
int n, m, s;
double num;
bool Bellman_ford(int s,double num)
{
memset(dis, , sizeof(dis));
dis[s] = num;
for (int i = ; i < n; i++)
{
bool f = false;//不能松弛
for (int j = ; j < E.size(); j++)
{
int u = E[j].u, v = E[j].v;
double c = E[j].cost, r = E[j].rate;
if (dis[v] < (dis[u] - c)*r)
{
f = true;
dis[v] = (dis[u] - c)*r;
}
}
if (!f) return false;
}
for(int j=;j<E.size();j++)
if (dis[E[j].v] < (dis[E[j].u] - E[j].cost)*E[j].rate)
{
return true;
}
return false;
}
int main()
{
while (scanf("%d%d%d%lf", &n, &m, &s, &num) != EOF)
{
int a, b;
double rab, cab, rba, cba;
for (int i = ; i < m; i++)
{
scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba);
E.push_back(edge(a, b, cab, rab));
E.push_back(edge(b, a, cba, rba));
}
if (Bellman_ford(s, num))
printf("YES\n");
else
printf("NO\n");
}
}

Bellman_ford 算法 Currency Exchange POJ1860的更多相关文章

  1. Currency Exchange POJ1860

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  2. POJ1860——Currency Exchange(BellmanFord算法求最短路)

    Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...

  3. POJ-1860 Currency Exchange( Bellman_Ford, 正环 )

    题目链接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our ...

  4. POJ 1860 Currency Exchange(如何Bellman-Ford算法判断图中是否存在正环)

    题目链接: https://cn.vjudge.net/problem/POJ-1860 Several currency exchange points are working in our cit ...

  5. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  6. POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】

    链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  7. POJ1860 Currency Exchange(bellman-ford)

    链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...

  8. 最短路(Bellman_Ford) POJ 1860 Currency Exchange

    题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...

  9. POJ1860 Currency Exchange【最短路-判断环】

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

随机推荐

  1. 类似QQ消息左滑删除的Demo

    最近在网上学到一篇类似QQ消息左滑删除的demo,完善了下代码,感觉还不错,特此分享一波: CustomSwipeListView.java 是个继承自ListView的类,里面调用了自定义View ...

  2. 递推DP UVA 1366 Martian Mining

    题目传送门 /* 题意:抽象一点就是给两个矩阵,重叠的(就是两者选择其一),两种铺路:从右到左和从下到上,中途不能转弯, 到达边界后把沿途路上的权值相加求和使最大 DP:这是道递推题,首先我题目看了老 ...

  3. 树形DP Gym 100496H House of Representatives

    题目传送门 /* 题意:寻找一个根节点,求min f(u) = ∑ρ(v, u) * p(v).ρ(v, u)是u到v的距离,p(v)是v点的权值 树形DP:先从1出发遍历第一次,sum[u]计算u到 ...

  4. WebSphere设置会话超时时间

    WebSphere Application Server的会话超时时间可以在三个层面进行设置,分别为:应用程序服务器级别.应用程序级别和代码层面进行设置. 设置方式:应用程序级别级别和应用级别可以通过 ...

  5. 用Movie显示gif(2)GifView

    1,类 import android.annotation.SuppressLint; import android.content.Context; import android.content.r ...

  6. Ajax学习笔记之一----------第一个Ajax Demo[转载]

    原文地址: http://www.cnblogs.com/pjx412/archive/2011/05/04/2037014.html 一.核心推动力:XMLHttpRequest对象XMLHttpR ...

  7. es6数值扩展

    1. 二进制和八进制表示法 从 ES5 开始,在严格模式之中,八进制就不再允许使用前缀0表示,ES6 进一步明确,要使用前缀0o表示. ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b(或0 ...

  8. SpringMVC中Controller类的方法返回String不跳转,而是将字符串显示到页面

    问题描述: 在spring中,控制层的注解一般都是使用@Controller,如果哪个请求参数需要返回数据的话,我们可以在该方法上配合@ResponseBody注解使用,这也是比较常见的方式了. 今天 ...

  9. Selenium基于Python web自动化基础一 -- 基础汇总及简单操作

    Selenium是UI层WEB端的自动化测试框架,也是目前市面上比较流行的自动化测试框架. ui层自动化测试本质是什么?模拟用户的真实操作行为. 基础汇总: 导入所需要的模块 from seleniu ...

  10. HDU_1114_piggy-bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...