分析:

  我们可以写把转移矩阵A写出来,然后求一下它的特征多项式,经过手动计算应该是这样的p(x)=$x^k-\sum\limits_{i=1}^ka_i*x^{k-i}$

  根据Cayley-Hamilton定理可得,p(A)=0

  他表示$A^n = f(A) * p(A) + g(A)$

  第一项的值是0,所以即$A^n=g(A)$,其中f(A) g(A)都是关于A的多项式,f(A)是多项式除法的商,g(A)是余数

  我们考虑$x^n$这个多项式,我们去求出它对于$p(A)$的余数多项式$g(A)$,那么$A^n$就等价于了$g(A)$,注意到新的多项式次数就很低了,不超过k-1

  我们要求的是$A^nH=\sum\limits_{i=0}^{k-1}c_i*A^i*H$的第一个元素,注意到$A^i*H$相当于把H又递推了i次

  所以结果等价于$A^nH=\sum\limits_{i=0}^{k-1}c_i*A^i*H$

  时间复杂度$O(k^2 log n)$,但常数很大

  中间的多项式取模和递推可以用FFT来优化,但常数更巨大

 #include<bits/stdc++.h>
using namespace std;
const int maxn=,mod=;
int a[maxn+],p[maxn+],ans[maxn+],num[maxn+];
int h[maxn+],tmp[maxn+];
int n,k;
void mul(int *a,int *b,int *ans)
{
for(int i=;i<=*k;++i) tmp[i]=;
for(int i=;i<k;++i)
for(int j=;j<k;++j)
tmp[i+j]=(tmp[i+j]+1LL*a[i]*b[j])%mod;
for(int i=*k-;i>=k;--i)
{
for(int j=k-;j>=;--j)
tmp[i-k+j]=(tmp[i-k+j]-1LL*tmp[i]*p[j])%mod,tmp[i-k+j]=(tmp[i-k+j]+mod)%mod;
tmp[i]=;
}
for(int i=;i<k;++i) ans[i]=tmp[i];
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=k;++i) scanf("%d",&a[i]);
for(int i=;i<k;++i) scanf("%d",&h[i]);
p[k]=;
for(int i=;i<=k;++i) p[k-i]=mod-a[i];
for(int i=k;i<*k;++i)
for(int j=;j<=k;++j)
{
h[i]=h[i]+1LL*h[i-j]*a[j]%mod;
h[i]%=mod;
}
if(n<*k) return *printf("%d\n",h[n]);
int b=n-k+;
num[]=,ans[]=;
while(b)
{
if(b&) mul(ans,num,ans);
mul(num,num,num);
b>>=;
}
long long res=;
for(int i=;i<k;++i) res=(res+1LL*ans[i]*h[i+k-])%mod;
printf("%lld\n",(res+mod)%mod);
return ;
}

bzoj4161 (k^2logn求线性递推式)的更多相关文章

  1. Berlekamp Massey算法求线性递推式

    BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Wate ...

  2. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  3. 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)

    这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...

  4. BM求线性递推模板(杜教版)

    BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元 ...

  5. 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )

    题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...

  6. 线性齐次递推式快速求第n项 学习笔记

    定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\l ...

  7. P1067Warcraft III 守望者的烦恼(十大矩阵问题之七求递推式)

    https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她 ...

  8. LG5487 【模板】线性递推+BM算法

    [模板]线性递推+BM算法 给出一个数列 \(P\) 从 \(0\) 开始的前 \(n\) 项,求序列 \(P\) 在\(\bmod~998244353\) 下的最短线性递推式,并在 \(\bmod~ ...

  9. 【THUSC2017】【LOJ2981】如果奇迹有颜色 DP BM 打表 线性递推

    题目大意 有一个 \(n\) 个点的环,你要用 \(m\) 中颜色染这 \(n\) 个点. 要求连续 \(m\) 个点的颜色不能是 $1 \sim m $ 的排列. 两种环相同当且仅当这两个环可以在旋 ...

随机推荐

  1. Win10 系统安装Sql Server2008 R2 数据库遇到的问题及解决办法总结!

    1.开始安装时,提示要先安装 “.NET Framework 3.5(包括.NET 2.0和3.0)”,之前已经下载好.NET Framework 3.5 sp1,安装时还是提示要先安装 “.NET  ...

  2. 46 Simple Python Exercises-Higher order functions and list comprehensions

    26. Using the higher order function reduce(), write a function max_in_list() that takes a list of nu ...

  3. 洛谷 P1163 银行贷款

    题目描述 当一个人从银行贷款后,在一段时间内他(她)将不得不每月偿还固定的分期付款.这个问题要求计算出贷款者向银行支付的利率.假设利率按月累计. 输入输出格式 输入格式: 输入文件仅一行包含三个用空格 ...

  4. javaee 第六周作业

    一.jsf(java server faces)的运行原理(工作方式) 1.jsf应用是事件驱动的,当一个事件发生时(比如用户单击一个按钮),事件通知通过HTTP发往服务器,服务器端使用叫做Faces ...

  5. Android安卓下拉阻尼效果实现原理及简单实例

    原理  这种效果是通过自定义控件的方式来实现的,我自定义了一个控件类型,这个自定义控件(PullDownDumperLayout)继承自线性布局(LinearLayout).  用户可以下拉弹出的那个 ...

  6. 【传智播客】Libevent学习笔记(三):事件循环

    目录 00. 目录 01. event_base_loop函数 02. event_base_dispatch函数 03. event_base_loopexit函数 04. event_base_l ...

  7. python+Eclipse+pydev环境搭建1

    编辑器: Eclipse + pydev插件 1. Eclipse是写JAVA的IDE, 这样就可以通用了,学习代价小.  学会了Eclipse, 以后写Python或者JAVA 都可以. 2. Ec ...

  8. CF550 DIV3

    A - Diverse Strings CodeForces - 1144A A string is called diverse if it contains consecutive (adjace ...

  9. Week06-继承、多态、抽象类与接口

    Week06-继承.多态.抽象类与接口 1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键字:接口,Comparable,interface关键字,Comparator,继承 ...

  10. qt 窗体间通信

    利用qt的信号和槽,可以完成窗体间的通信,下面列出父子窗口利用信号和槽的相关代码. parent窗口: //parent.h #ifndef PARENT_H #define PARENT_H #in ...