UVa 12716 && UVaLive 6657 GCD XOR (数论)
题意:给定一个 n ,让你求有多少对整数 (a, b) 1 <= b <= a 且 gcd(a, b) = a ^ b。
析:设 c = a ^ b 那么 c 就是 a 的约数,那么根据异或的性质 b = a ^ c,那么我们就可以枚举 a 和 c和素数筛选一样,加上gcd, n*logn*logn。
多写几个你会发现 c = a - b,证明如下:
首先 a - b <= a ^ b,且 a - b >= c,下面等于等号,用反证法,假设存在 a - b > c,那么 c < a- b <= a ^ b,然后c = a ^ b矛盾。
然后剩下就好办了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 30000000;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int a[maxn+1]; int main(){
memset(a, 0, sizeof(a));
int m = maxn / 2;
for(int i = 1; i <= m; i++)
for(int j = i * 2; j <= maxn; j += i){
int b = j - i;
if(i == (b ^ j)) a[j]++;
}
for(int i = 2; i <= maxn; i++) a[i] += a[i-1]; int cases = 0, T, n; cin >> T;
while(T--){
scanf("%d", &n);
printf("Case %d: %d\n", ++cases, a[n]);
}
return 0;
}
UVa 12716 && UVaLive 6657 GCD XOR (数论)的更多相关文章
- uvalive 6657 GCD XOR
//感觉太长时间没做题 好多基本的能力都丧失了(>_<) 首先大概是这样的,因为gcd(a,b)=c,所以a,b都是c的倍数,所以我们依次枚举a的值为2c 3c 4c......,a xo ...
- uval 6657 GCD XOR
GCD XORGiven an integer N, nd how many pairs (A; B) are there such that: gcd(A; B) = A xor B where1 ...
- UVA 12716 GCD XOR(数论+枚举+打表)
题意:给你一个N,让你求有多少组A,B, 满足1<= B <= A <= N, 且 gcd(A,B) = A XOR B. 思路:首先我们能够得出两个结论: A-B > ...
- UVA12716 GCD XOR 数论数学构造
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u010682557/article/details/36204645 题目给你一个N,让你求 两个数 ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- GCD XOR UVA 12716 找规律 给定一个n,找多少对(a,b)满足1<=b<=a<=n,gcd(a,b)=a^b;
/** 题目:GCD XOR UVA 12716 链接:https://vjudge.net/problem/UVA-12716 题意:给定一个n,找多少对(a,b)满足1<=b<=a&l ...
- GCD XOR uvalive6657
GCD XORGiven an integer N, nd how many pairs (A; B) are there such that: gcd(A; B) = A xor B where1 ...
- UVA - 12716 GCD XOR(GCD等于XOR)(数论)
题意:输入整数n(1<=n<=30000000),有多少对整数(a, b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b. 分析:因为c是a的约数,所以枚 ...
- UVa 12716 - GCD XOR(筛法 + 找规律)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- BZOJ1700: [Usaco2007 Jan]Problem Solving 解题
每月m<=1000块钱,有n<=300道题,要按顺序做,每月做题要花钱,花钱要第一个月预付下个月立即再付一次,给出预付和再付求最少几个月做完题,第一个月不做. 神奇的DP..竟没想出来.. ...
- spring mvc dispatcherServlet
1. 在web.xml中配置servlet对相应的url请求进行处理 <servlet> <servlet-name>springDispatcher</servlet- ...
- HDU3549 最大流 裸题
EK算法 时间复杂度o(n*m*m) 因为有反向边每次bfs时间为 n*m 每次删一条边 最多m次 代码 #include<iostream> #include<string.h& ...
- webstorm初始化
1.皮肤设置,重启后Terminal皮肤生效 2.排除目录 2.1全局排除 2.2局部排除 选中文件夹 右击Make Directroy As 选择 Excluded 3.代码自定义 3.1 cons ...
- Reverse Nodes in k-Group (链表)
Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. If ...
- Spring Boot项目错误:Error parsing lifecycle processing instructions
pom.xml文件错误:Error parsing lifecycle processing instructions 解决方法:清空.m2/repository下的所有依赖文件,重新下载即可解决该问 ...
- sublime text 3(Build 3103)最新注冊码
原来注冊过的sublime text 3近期更新了.没想到原来的注冊码就失效了,只是我找到了最新的注冊码(Build 3103),与大家分享一下(第一个亲測可用). -– BEGIN LICENSE ...
- java.util.MissingResourceException: Can't find resource for bundle oracle.sysman.db.rsc.LoginResourc
http://blog.itpub.net/197458/viewspace-1055358/ oracle 10.2.0.4 windows 2003 X64 平台 系统安装EMCA正常.第一次 ...
- IntelliJ 中类似于Eclipse ctrl+o的是ctrl+F12
IntelliJ 中类似于Eclipse ctrl+o的是ctrl+F12 学习了:https://blog.csdn.net/sjzylc/article/details/47979815
- POJ-2240 -Arbitrage(Bellman)
题目链接:Arbitrage 让这题坑了,精度损失的厉害.用赋值的话.直接所有变成0.00了,无奈下,我仅仅好往里输了,和POJ1860一样找正环,代码也差点儿相同,略微改改就能够了,可是这个题精度损 ...